Advertisement

Journal of Molecular Neuroscience

, Volume 26, Issue 2–3, pp 177–184 | Cite as

Computer-assisted image analysis of caveolin-1 involvement in the internalization process of adenosine A2A-dopamine D2 receptor heterodimers

  • Susanna Genedani
  • Diego Guidolin
  • Giuseppina Leo
  • Monica Filaferro
  • Maria Torvinen
  • Amina S. Woods
  • Kjell Fuxe
  • Sergi Ferré
  • Luigi F. Agnati
Original Article

Abstract

A functional aspect of horizontal molecular networks has been investigated experimentally, namely the heteromerization between adenosine A2A and dopamine D2 receptors and the possible role of caveolin-1 in the cotrafficking of these molecular complexes. This study has been carried out by means of computer-assisted image analysis procedure of laser images of membrane immunoreactivity of caveolin-1, A2A, D1, and D2 receptors obtained in two clones of Chinese hamster ovary cells—one transfected with A2A and dopamine D1 receptors and the other one with A2A and D2 receptors. Cells were treated for 3 h with 10 µM D1 receptor agonist SKF 38393, 50 µM D2-D3 receptor agonist quinpirole, and 200 nM A2A receptor agonist CGS 21680. In A2A-D1-cotransfected cells, caveolin-1 was found to colocalize with both A2A and D1 receptors and treatment with SKF 38393 induced internalization of caveolin-1 and D1 receptors, with a preferential internalization of D1 receptors colocalized with caveolin-1. In A2A-D2-cotransfected cells, caveolin-1 was found to colocalize with both A2A and D2 receptors and either CGS 21680 or quinpirole treatment induced internalization of caveolin-1 and A2A and D2 receptors, with a preferential internalization of A2A and D2 receptors colocalized with caveolin-1. The results suggest that A2A and D2 receptors and caveolin-1 likely interact forming a macrocomplex that internalizes upon agonist treatment. These observations are discussed in the frame of receptor oligomerization and of the possible functional role of caveolin-1 in the process of co-internalization and, hence, in controlling the permanence of receptors at the plasma membrane level (prerequisite for receptor mosaic organization and plastic adjustments) and in the control of receptor desensitization.

Index Entries

Adenosine A2A receptor dopamine D2 receptor caveolin-1 heteromers internalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnati L. F., Ferré S., Lluis C., Franco R., and Fuxe K. (2003) Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol. Rev. 55, 509–550.PubMedCrossRefGoogle Scholar
  2. Anderson R. G. (1998) The caveolae membrane system. Annu. Rev. Biochem. 67, 199–225.PubMedCrossRefGoogle Scholar
  3. Armstrong D. and Strange P. G. (2001) Dopamine D2 receptor dimer formation: evidence from ligand binding. J. Biol. Chem. 276, 22621–22629.PubMedCrossRefGoogle Scholar
  4. Bara-Jimenez W., Sherzai A., Dimitrova T., Favit A., Bibbiani F., Gillespie M., et al. (2003) Adenosine A(2A) receptor antagonist treatment of Parkinson’s disease. Neurology 61, 293–296.PubMedGoogle Scholar
  5. Bhatnagar A., Sheffler D. J., Kroeze W. K., Compton-Toth B., and Roth B. L. (2004) Caveolin-1 interacts with 5-HT2A serotonin receptors and profoundly modulates the signaling of selected Galphaq-coupled protein receptors. J. Biol. Chem. 279, 34614–34623.PubMedCrossRefGoogle Scholar
  6. Bouvier M. (2001) Oligomerization of G-protein-coupled transmitter receptors. Nat. Rev. Neurosci. 2, 274–286.PubMedCrossRefGoogle Scholar
  7. Calon F., Dridi M., Hornykiewicz O., Bedard P. J., Rajput A. H., and Di Paolo T. (2004) Increased adenosine A2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain 127, 1075–1084.PubMedCrossRefGoogle Scholar
  8. Canals M., Marcellino M., Fanelli F., Ciruela F., de Benedetti P., Goldberg S., et al. (2003) A denosine A2A-dopamine D2 receptor-receptor heteromerization. Qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J. Biol. Chem. 278, 46741–46749.PubMedCrossRefGoogle Scholar
  9. Ciruela F., Burgueno J., Casado V., Canals M., Marcellino D., Goldberg S. R., et al. (2004) Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope-epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors. Anal. Chem. 76, 5354–5363PubMedCrossRefGoogle Scholar
  10. Escriche M., Burgueno J., Ciruela F., Canela E. I., Mallol J., Enrich C., et al. (2003) Ligand-induced caveolae-mediated internalisation of A1 adenosine receptors: morphological evidence of endosomal sorting and receptor recycling. Exp. Cell. Res. 285, 72–90.PubMedCrossRefGoogle Scholar
  11. Ferré S. (1997) Adenosine-dopamine interactions in the ventral striatum. Implications for the treatment of schizophrenia. Psychopharmacology 133, 107–120.PubMedCrossRefGoogle Scholar
  12. Ferré S., Ciruela F., Canals M., Marcellino D., Burgueno J., Casado V., et al. (2004) Adenosine A2A-dopamine D2 receptor-receptor heteromers. Targets for neuropsychiatric disorders. Parkinsonism Relat. Disord. 10, 265–271.PubMedCrossRefGoogle Scholar
  13. Ferré S., Ciruela F., Woods A. S., Canals M., Burgueno J., Marcellino D., et al. (2003) Glutamate mGlu5-adenosine A2A-dopamine D2 receptor interactions in the striatum. Implications for drug therapy in neuropsychiatric disorders and drug abuse. Curr. Med. Chem. Central Nervous Systems Agents 33, 1–26.CrossRefGoogle Scholar
  14. Ferré S., Fredholm B. B., Morelli M., Popoli P., and Fuxe K. (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci. 20, 482–487.PubMedCrossRefGoogle Scholar
  15. Ferré S., Fuxe K., von Euler G., Johansson B., and Fredholm B. B. (1992) Adenosine-dopamine interactions in the brain. Neuroscience 51, 501–512.PubMedCrossRefGoogle Scholar
  16. Ferré S., von Euler G., Johansson B., Fredholm B. B., and Fuxe K. (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc. Natl. Acad. Sci. U. S. A. 88, 7238–7241.PubMedCrossRefGoogle Scholar
  17. Gainetdinov R. R., Premont R. T., Bohn L. M., Lefkowitz R. J., and Caron M. G. (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu. Rev. Neurosci. 27, 107–144.PubMedCrossRefGoogle Scholar
  18. Guo W., Shi L., and Javitch J. A. (2003) The fourth transmembrane segment forms the interface of the dopamine D2 receptor homodimer. J. Biol. Chem. 278, 4385–4388.PubMedCrossRefGoogle Scholar
  19. Hauser R. A., Hubble J. P., and Truong D. D. (2003) Randomized trial of the adenosine A(2A) receptor antagonist istradefylline in advanced PD. Neurology 61, 297–303.PubMedGoogle Scholar
  20. Hillion J., Canals M., Torvinen M., Casado V., Scott R., Terasmaa A., et al. (2002) Coaggregation, cointernalisation, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J. Biol. Chem. 277, 18091–18097.PubMedCrossRefGoogle Scholar
  21. Ishii M. and Kurachi Y. (2003) Physiological actions of regulators of G-protein signaling (RGS) proteins. Life Sci. 74, 163–171.PubMedCrossRefGoogle Scholar
  22. Kudlacek O., Just H., Korkhov V. M., Vartian N., Klinger M., Pankevych H., et al. (2003) The human D2 dopamine receptor synergizes with the A2A adenosine receptor to stimulate adenylyl cyclase in PC12 cells. Neuropsychopharmacology 28, 1317–1327.PubMedCrossRefGoogle Scholar
  23. Kull B., Ferré S., Arslan G., Svenningsson P., Owman C., and Fredholm B. B. (1999) Reciprocal interactions between adenosine A2A and dopamine D2 receptors in Chinese hamster ovary cells co-transfected with the two receptors. Biochem. Pharmacol. 58, 1035–1045.PubMedCrossRefGoogle Scholar
  24. Kurzchalia T. V. and Parton R. G. (1999) Membrane microdomains and caveolae. Curr. Opin. Cell Biol. 11, 424–431.PubMedCrossRefGoogle Scholar
  25. Landmann L. (2002) Deconvolution improves colocalization analysis of multiple fluorochromes in 3D confocal data sets more than filtering techniques. J. Microsc. 208, 134–147.PubMedCrossRefGoogle Scholar
  26. Lee K. W., Hong J. H., Choi I. Y., Che Y., Lee J. K., Yang S. D., et al. (2002) Impaired D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase. J. Neurosci. 22, 7931–7940.PubMedGoogle Scholar
  27. Liu P., Rudick M., and Anderson R. G. (2002) Multiple functions of caveolin-1. J. Biol. Chem. 277, 41295–41298.PubMedCrossRefGoogle Scholar
  28. Manders E. M. M., Verbeek F. J., and Aten J. A. (1993) Measurement of co-localization of objects in dual-color confocal images. J. Microsc. 169, 375–382.Google Scholar
  29. Miller W. E. and Lefkowitz R. J. (2001) Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr. Opin. Cell Biol. 13, 139–145.PubMedCrossRefGoogle Scholar
  30. Nabi I. R. and Le P. U. (2003) Caveolae/raft-dependent endocytosis. J. Cell Biol. 161, 673–677.PubMedCrossRefGoogle Scholar
  31. Nichols B. (2003) Caveosomes and endocytosis of lipid rafts. J. Cell Sci. 116, 4707–4714.PubMedCrossRefGoogle Scholar
  32. Penela P., Ribas C., and Mayor F. Jr. (2003) Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cell Signal. 15, 973–981.PubMedCrossRefGoogle Scholar
  33. Smart E. J., Graf G. A., McNiven M. A., Sessa W. C., Engelman J. A., Scherer P. E., et al. (1999) Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell. Biol. 19, 7289–7304.PubMedGoogle Scholar
  34. Tomiyama M., Kimura T., Maeda T., Tanaka H., Kannari K., and Baba M. (2004) Upregulation of striatal adenosine A2A receptor mRNA in 6-hydroxydopamine-lesioned rats intermittently treated with L-DOPA. Synapse 52, 218–222.PubMedCrossRefGoogle Scholar
  35. Torvinen M., Kozell L. B., Neve K. A., Agnati L. F., and Fuxe K. (2004) Biochemical identification of dopamine D2 receptor domains interacting with the adenosine A2A receptor. J. Mol. Neurosci. 24, 273–280.CrossRefGoogle Scholar
  36. van Deurs B., Roepstorff K., Hommelgaard A. M., and Sandvig K. (2003) Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol. 13, 92–100.PubMedCrossRefGoogle Scholar
  37. Vortherms T. A. and Watts V. J. (2004) Sensitization of neuronal A2A adenosine receptors after persistent D2 dopamine receptor activation. J. Pharmacol. Exp. Ther. 308, 221–227.PubMedCrossRefGoogle Scholar
  38. Webb R. H. and Dorey C. K. (1995) The pixilated image, in Handbook of Biological Confocal Microscopy, Pawley, J. B., ed., Plenum Press, New York, pp. 55–67.Google Scholar
  39. Yao L., Arolfo M. P., Dohrman D. P., Jiang Z., Fan P., Fuchs S., et al. (2002) betagamma Dimers mediate synergy of dopamine D2 and adenosine A2 receptor-stimulated PKA signaling and regulate ethanol consumption. Cell 109, 733–743.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Susanna Genedani
    • 1
  • Diego Guidolin
    • 1
  • Giuseppina Leo
    • 2
  • Monica Filaferro
    • 1
  • Maria Torvinen
    • 3
  • Amina S. Woods
    • 4
  • Kjell Fuxe
    • 3
  • Sergi Ferré
    • 4
  • Luigi F. Agnati
    • 2
  1. 1.Section of PharmacologyUniversity of Modena and Reggio EmiliaModenaItaly
  2. 2.Section of Physiology Department of Biomedical SciencesUniversity of Modena and Reggio EmiliaModenaItaly
  3. 3.Department of Neuroscience, Division of Cellular and Molecular NeurochemistryKarolinska InstituteStockholmSweden
  4. 4.Department of Health and Human ServicesNational Institute on Drug Abuse, Intramural Research Program, National Institutes of HealthBaltimore

Personalised recommendations