Journal of Molecular Neuroscience

, Volume 26, Issue 1, pp 27–32 | Cite as

Oxidative stress activates transcription factor NF-κB-mediated protective signaling in primary rat neuronal cultures

  • Ella Kratsovnik
  • Yael Bromberg
  • Oded Sperling
  • Esther Zoref-Shani
Original Article


Activation of transcription factor nuclear factor-κB (NF-κB) can result in enhanced de novo synthesis of both proteins that confer protection and those that cause death. The present study was undertaken to clarify in primary neuronal cultures the consequences of the oxidative stress-induced activation of NF-κB and mediation of death or survival signals. The neuronal cultures were exposed to chemical ischemia (iodoacetic acid), followed by reperfusion (I/R insult). This insult injured the neurons, as manifested in a 7- to 10-fold increase in LDH release, and decreased the cellular content of IκBα by 55–65 %, indicating NF-κB activation. The antioxidants LY231617, melatonin, and sodium salicylate and the antioxidant and inhibitor of NF-κB activation pyrrolidine dithiocarbamate, protected the neurons against the insult and prevented the decrease in cellular IκBα content. In contrast, inhibition of NF-κB translocation by SN50 in both uninsulated and insulted neuronal cultures resulted in a 2.9- and 2.4-fold increase in LDH release, respectively. The results indicate that the insult-induced oxidative stress activates transcription factor NF-κB associated with induction of protection and suggest that constitutive activation of NF-κB under physiological conditions acts to protect the neurons against physiological injury.

Index Entries

Antioxidants IκBα pyrrolidine dithiocarbamate (PDTC) reactive oxygen species (ROS) SN50 transcription factor nuclear factor-κB (NF-κB) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhakar A. L, Tannis L. L., Zeindler C., Russo M. P., Jobin C., Park D. S., et al. (2002) Constitutive nuclear factor-kappaB activity is required for central neuron survival. J. Neurosci. 22, 8466–8475.PubMedGoogle Scholar
  2. Blondeau N., Plamondon H., Richelme C., Heurteaux C., and Lazdunski M. (2000) K(ATP) channel openers, adenosine agonists and epileptic preconditioning are stress signals inducing hippocampal neuroprotection. Neuroscience 100, 465–474.PubMedCrossRefGoogle Scholar
  3. Blondeau N., Widmann C., Lazdunski M., and Heurteaux C. (2001) Activation of the nuclear factor-kappaB is a key event in brain tolerance. J. Neurosci. 21, 4668–4677.PubMedGoogle Scholar
  4. Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  5. Chiarugi A. (2002) Characterization of the molecular events following impairment of NF-kappaB-driven transcription in neurons. Brain Res. Mol. Brain Res. 109, 179–188.PubMedCrossRefGoogle Scholar
  6. Clemens J.A. (2000) Cerebral ischemia: gene activation, neuronal injury, and the protective role of antioxidants. Free Radic. Biol. Med. 28, 1526–1531.PubMedCrossRefGoogle Scholar
  7. Di Capua N., Sperling O., and Zoref-Shani E. (2003) Protein kinase C-ɛ is involved in the adenosine-activated signal transduction pathway conferring protection against ischemia-reperfusion injury in primary rat neuronal cultures. J. Neurochem. 84, 409–412.CrossRefGoogle Scholar
  8. Fridmacher V., Kaltschmidt B., Goudeau B., Ndiaye D., Rossi F. M., Pfeiffer J., et al. (2003) Forebrain-specific neuronal inhibition of nuclear factor-kappaB activity leads to loss of neuroprotection. J. Neurosci. 23, 9403–9408.PubMedGoogle Scholar
  9. Heck S., Lezoualc’h F., Engert S., and Behl C. (1999) Insulin-like growth factor-1-mediated neuroprotection against oxidative stress is associated with activation of nuclear factor kappaB. J. Biol. Chem. 274, 828–835.CrossRefGoogle Scholar
  10. Kaltschmidt B., Uherek M., Wellmann H., Volk B., and Kaltschmidt C. (1999) Inhibition of NF-kappaB potentiates amyloid beta-mediated neuronal apoptosis. Proc. Natl. Acad. Sci. U. S. A. 96, 409–414.CrossRefGoogle Scholar
  11. Karin M. and Lin A. (2002) NF-kappaB at the crossroads of life and death. Nat. Immunol. 3, 221–227.PubMedCrossRefGoogle Scholar
  12. Karin M., Takahashi T., Kapahi P., Delhase M., Chen Y., Makris C., et al. (2001) Oxidative stress and gene expression: the AP-1 and NF-kappaB connections. Biofactors 15, 87–89.PubMedGoogle Scholar
  13. Kirino T., Tsujita Y., and Tamura A. (1991) Induced tolerance to ischemia in gerbil hippocampal neurons. J. Cereb. Blood Flow Metab. 11, 299–307.PubMedGoogle Scholar
  14. Kitagawa K., Matsumoto M., Tagaya M., Hata R., Ueda H., Niinobe M., et al. (1990) ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res. 528, 21–24.PubMedCrossRefGoogle Scholar
  15. Lezoualc’h F. and Behl C. (1998) Transcription factor NF-kappaB: friend or foe of neurons? Mol. Psychiatry 3, 15–20.PubMedCrossRefGoogle Scholar
  16. Lin B., Williams-Skipp C., Tao Y., Schleicher M. S., Cano L. L, Duke R. C., et al. (1999) NF-kappaB functions as both a proapoptotic and antiapoptotic regulatory factor within a single cell type. Cell Death Differ. 6, 570–582.PubMedCrossRefGoogle Scholar
  17. Lin Y. Z., Yao S. Y., Veach R. A., Torgerson T. R., and Hawiger J. (1995) Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J. Biol. Chem. 270, 14255–14258.PubMedCrossRefGoogle Scholar
  18. Mercurio F. and Manning A. M. (1999) NF-kappaB as a primary regulator of the stress response. Oncogene 18, 6163–6171.PubMedCrossRefGoogle Scholar
  19. Nurmi A., Vartiainen N., Pihlaja R., Goldsteins G., Yrjanheikki J., and Koistinaho J. (2004) Pyrrolidine dithiocarbamate inhibits translocation of nuclear factor kappa-B in neurons and protects against brain ischaemia with a wide therapeutic time window. J. Neurochem. 91, 755–765.PubMedCrossRefGoogle Scholar
  20. Perkins N. D. (2000) The Rel/NF-kappa B family: friend and foe. Trends Biochem. Sci. 25, 434–440.PubMedCrossRefGoogle Scholar
  21. Piccioli P., Porcile C., Stanzione S., Bisaglia M., Bajetto A., Bonavia R., et al. (2001) Inhibition of nuclear factor-kappaB activation induces apoptosis in cerebellar granule cells. J. Neurosci. Res. 66, 1064–1073.PubMedCrossRefGoogle Scholar
  22. Ravati A., Ahlemeyer B., Becker A., Klumpp S., and Krieglstein J. (2001) Preconditioning-induced neuroprotection is mediated by reactive oxygen species and activation of the transcription factor nuclear factor-kappaB. J. Neurochem. 78, 909–919.PubMedCrossRefGoogle Scholar
  23. Reshef A., Sperling O., and Shani E. (2000) The adenosine-induced mechanism for the acquisition of ischemic tolerance in primary rat neuronal cultures. Pharmacol. Ther. 87, 151–159.PubMedCrossRefGoogle Scholar
  24. Schreck R., Meier B., Mannel D. N., Droge W., and Baeuerle P. A. (1992) Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J. Exp. Med. 175, 1181–1194.PubMedCrossRefGoogle Scholar
  25. Schreck R., Rieber P., and Baeuerle P. A. (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappaB transcription factor and HIV-1. EMBO J. 10, 2247–2258.PubMedGoogle Scholar
  26. Shimazaki K., Ishida A., and Kawai N. (1994) Increase in bcl-2 oncoprotein and the tolerance to ischemia-induced neuronal death in the gerbil hippocampus. Neurosci. Res. 20, 95–99.PubMedCrossRefGoogle Scholar
  27. Shou Y., Li N., Li L., Borowitz J. L., and Isom G. E. (2002) NF-kappaB-mediated up-regulation of Bcl-X(S) and Bax contributes to cytochrome c release in cyanide-induced apoptosis. J. Neurochem. 81, 842–852.PubMedCrossRefGoogle Scholar
  28. Sperling O., Bromberg Y., Oelsner H., and Zoref-Shani E. (2003) Reactive oxygen species play an important role in iodoacetate-induced neurotoxicity in primary rat neuronal cultures and in differentiated PC12 cells. Neurosci. Lett. 351, 137–140.PubMedCrossRefGoogle Scholar
  29. Storz P., Doppler H., and Toker A. (2004) Protein kinase Cdelta selectively regulates protein kinase D-dependent activation of NF-kappaB in oxidative stress signaling. Mol. Cell. Biol. 24, 2614–2626.PubMedCrossRefGoogle Scholar
  30. Toyoda T., Kassell N. F., and Lee K. S. (1997) Induction of ischemic tolerance and antioxidant activity by brief focal ischemia. Neuroreport 8, 847–851.PubMedCrossRefGoogle Scholar
  31. Wang T., Zhang X., and Li J. J. (2002) The role of NF-kappaB in the regulation of cell stress responses. Int. Immunopharmacol. 2, 1509–1520.PubMedCrossRefGoogle Scholar
  32. Ziegler-Heitbrock H. W., Sternsdorf T., Liese J., Belohradsky B., Weber C., Wedel A., et al. (1993) Pyrrolidine dithiocarbamate inhibits NF-kappaB mobilization and TNF production in human monocytes. J. Immunol. 151, 6986–6993.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Ella Kratsovnik
    • 1
  • Yael Bromberg
    • 1
  • Oded Sperling
    • 1
  • Esther Zoref-Shani
    • 1
  1. 1.Department of Clinical Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations