Advertisement

Journal of Molecular Neuroscience

, Volume 25, Issue 3, pp 259–274 | Cite as

Brain effects of chronic IBD in areas abnormal in autism and treatment by single neuropeptides secretin and oxytocin

  • Martha G. Welch
  • Thomas B. Welch-Horan
  • Muhammad Anwar
  • Nargis Anwar
  • Robert J. Ludwig
  • David A. Ruggiero
Original Article

Abstract

Recent research points to the connection between behavioral and gut disorders. Early adverse events are associated with inflammatory bowel disease (IBD). In animal models, maternal deprivation and social isolation predispose to gastric erosion and brain pathology. This study examined (1) brain effects of chronic gastrointestinal inflammation in a rat model of acquired IBD and (2) whether such changes are resolved by individual secretin (S) or oxytocin (OT) peptide treatment. Neurological manifestations of IBD were mapped by c-fos gene expression in male Sprague-Dawley rats (n=10) with trinitrobenzene sulfonic acid (TNBS)-induced IBD vs controls (n=11). IBD was characterized by moderate/severe infiltration of inflammatory cells 10 d after TNBS infusion. Age-matched pairs were processed for immunocytochemical detection of Fos, expressed when neurons are stimulated. S or OT (100 µg/250 µL saline) or equivolume saline was administered iv by Alzet pump for 20 d after disease onset. Degree of resolution of colitis-induced brain activation was assessed by c-fos expression, and mean numbers of Fos-immunoreactive nuclei for each group were compared using Independent Samples T-test. Chronic IBD activated periventricular gray, hypothalamic/visceral thalamic stress axes and cortical domains, and septal/preoptic/amygdala, brain areas abnormal in autism. Single peptide treatment with S or OT did not alter the effects of inflammation on the brain. Brain areas concomitantly activated by visceral inflammation are those often abnormal in autism, suggesting that IBD could be a model for testing treatments of autism. Other single and combined peptide treatments of IBD should be tested. The clinical implications for treating autism, IBD, and concomitant sickness behaviors with peptide therapy, with or without maternal nurturing as a natural equivalent, are presented.

Index Entries

Treatment autism IBD peptides oxytocin secretin inflammation amygdala hypothalamic stress axis conditioning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abad C., Martinez C., Juarranz M. G., Arranz A., Leceta J., Delgado M., and Gomariz R. P. (2003) Therapeutic effects of vasoactive intestinal peptide in the trinitrobenzene sulfonic acid mice model of Crohn’s disease. Gastroenterology 124, 961–971.PubMedGoogle Scholar
  2. Ackerman S. H., Hofer M. A., and Weiner H. (1978) Predisposition to gastric erosions in the rat: behavioral and nutritional effects of early maternal separation. Gastroenterology 75, 649–654.PubMedGoogle Scholar
  3. Adolphs R., Baron-Cohen S., and Tranel D. (2002) Impaired recognition of social emotions following amygdala damage. J. Cogn. Neurosci. 14, 1264–1274.PubMedGoogle Scholar
  4. Altemus M., Redwine L. S., Leong Y. M., Frye C. A., Porges S. W., and Carter C. S. (2001) Responses to laboratory psychosocial stress in postpartum women. Psychosom. Med. 63, 814–821.PubMedGoogle Scholar
  5. Ansorge M. S., Zhou M., Lira A., Hen R., and Gingrich J. A. (2004) Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306, 879–881.PubMedGoogle Scholar
  6. Aylward E. H., Minshew N. J., Goldstein G., Honeycutt N. A., Augustine A. M., Yates K. O., et al. (1999) MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology 53, 2145–2150.PubMedGoogle Scholar
  7. Ballaban-Gil K. and Tuchman R. (2000) Epilepsy and epileptiform EEG: association with autism and language disorders. Ment. Retard. Dev. Disabil. Res. Rev. 6, 300–308.PubMedGoogle Scholar
  8. Banks W. A., Goulet M., Rusche J. R., Niehoff M. L., and Boismenu R. (2002) Differential transport of a secretin analog across the blood-brain and blood-cerebrospinal fluid barriers of the mouse. J. Pharmacol. Exp. Ther. 302, 1062–1069.PubMedGoogle Scholar
  9. Barber W. D. and Yuan C. S. (1993) Gastric vagal-evoked and greater splanchnic-evoked unitary responses in the hypothalamus. Am. J. Physiol. 264, G1133-G1141.PubMedGoogle Scholar
  10. Barreau F., Cartier C., Ferrier L., Fioramonti J., and Bueno L. (2004) Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats. Gastroenterology 127, 524–534.PubMedGoogle Scholar
  11. Bauman M. and Kemper T. L. (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35, 866–874.PubMedGoogle Scholar
  12. Bauman M. L. and Kemper T. L. (2003) The neuropathology of the autism spectrum disorders: what have we learned? Novartis Found. Symp. 251, 112–122.PubMedCrossRefGoogle Scholar
  13. Bauminger N. and Kasari C. (2000) Loneliness and friendship in high-functioning children with autism. Child Dev. 71(2), 447–456.PubMedGoogle Scholar
  14. Bayliss W. M. and Starling E. H. (1902) The mechanism of pancreatic secretion. J. Physiol. (Lond.) 28, 325–353.Google Scholar
  15. Belmonte M. K., Allen G., Beckel-Mitchener A., Boulanger L. M., Carper R. A., and Webb S. J. (2004) Autism and abnormal development of brain connectivity. J. Neurosci. 24, 9228–9231.PubMedGoogle Scholar
  16. Bowlby J. (1958) The nature of the child’s tie to his mother. Int. J. Psychoanal. 39, 350–373.PubMedGoogle Scholar
  17. Buchsbaum M. S., Hollander E., Haznedar M. M., Tang C., Spiegel-Cohen J., Wei T. C., et al. (2001) Effect of fluoxetine on regional cerebral metabolism in autistic spectrum disorders: a pilot study. Int. J. Neuropsychopharmacol. 4, 119–125.PubMedGoogle Scholar
  18. Burke W. J., Li S. W., Chung H. D., Ruggiero D. A., Kristal B. S., Johnson E. M., et al. (2004) Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative diseases. Neurotoxicology 25, 101–115.PubMedGoogle Scholar
  19. Carter C. S. (1998) Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology 23, 779–818.PubMedGoogle Scholar
  20. Cetin Y. (1990) Secretin-cells of the mammalian intestine contain serotonin. Histochemistry 93, 601–606.PubMedGoogle Scholar
  21. Cho J. H. (2003) Significant role of genetics in IBD: the NOD2 gene. Rev. Gastroenterol. Disord. 3(Suppl. 1), S18–22.PubMedGoogle Scholar
  22. Chugani D. C., Muzik O., Rothermel R., Behen M., Chakraborty P., Mangner T., et al. (1997) Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Ann. Neurol. 42, 666–669.PubMedGoogle Scholar
  23. Comi A. M., Zimmerman A. W., Frye V. H., Law P. A., and Peeden J. N. (1999) Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism. J. Child Neurol. 14, 388–394.PubMedGoogle Scholar
  24. Cook E. H. (1990) Autism: review of neurochemical investigation. Synapse 6, 292–308.PubMedGoogle Scholar
  25. Courchesne E. (2004) Brain development in autism: early overgrowth followed by premature arrest of growth. Ment. Retard. Dev. Disabil. Res. Rev. 10, 106–111.PubMedGoogle Scholar
  26. Courchesne E. (1991) Neuroanatomic imaging in autism. Pediatrics 87, 781–790.PubMedGoogle Scholar
  27. Cushing B. S., Yamamoto Y., Hoffman G. E., and Carter C. S. (2003) Central expression of c-Fos in neonatal male and female prairie voles in response to treatment with oxytocin. Brain Res. Dev. Brain Res. 143, 129–136.PubMedGoogle Scholar
  28. Daenen E. W., Wolterink G., Gerrits M. A., and Van Ree J. M. (2002) The effects of neonatal lesions in the amygdala or ventral hippocampus on social behaviour later in life. Behav. Brain Res. 136, 571–582.PubMedGoogle Scholar
  29. Davidson R. J. and Fox N. A. (1989) Frontal brain asymmetry predicts infants’ response to maternal separation. J. Abnorm. Psychol. 98, 127–131.PubMedGoogle Scholar
  30. Dawson G., Ashman S. B., Panagiotides H., Hessl D., Self J., Yamada E., and Embry L. (2003) Preschool outcomes of children of depressed mothers: role of maternal behavior, contextual risk, and children’s brain activity. Child Dev. 74, 1158–1175.PubMedGoogle Scholar
  31. Dawson G., Meltzoff A. N., Osterling J., Rinaldi J., and Brown E. (1998) Children with autism fail to orient to naturally occurring social stimuli. J. Autism Dev. Disord. 28, 479–485.PubMedGoogle Scholar
  32. DeFelice M. L., Ruchelli E. D., Markowitz J. E., Strogatz M., Reddy K. P., Kadivar K., et al. (2003) Intestinal cytokines in children with pervasive developmental disorders. Am. J. Gastroenterol. 98, 1777–1782.PubMedGoogle Scholar
  33. De Fosse L., Hodge S. M., Makris N., Kennedy D. N., Caviness V. S. Jr., McGrath L., et al. (2004) Language-association cortex asymmetry in autism and specific language impairment. Ann. Neurol. 56, 757–766.PubMedGoogle Scholar
  34. Delgado M., Leceta J., Sun W., Gomariz R. P., and Ganea D. (2000) VIP and PACAP induce shift to a Th2 response by upregulating B7.2 expression. Ann. N. Y. Acad. Sci. 921, 68–78.PubMedCrossRefGoogle Scholar
  35. Dhossche D. M. and Stanfill S. (2004) Could ECT be effective in autism? Med. Hypotheses 63, 371–376.PubMedGoogle Scholar
  36. Dietrich W. and Erbguth F. (2003) Neurological complications of inflammatory intestinal diseases. Fortschr. Neurol. Psychiatr. 71, 406–414.PubMedGoogle Scholar
  37. Dohi T., Fujihashi K., Kiyono H., Elson C. O., and McGhee J. R. (2000) Mice deficient in Th1- and Th2-type cytokines develop distinct forms of hapten-induced colitis. Gastroenterology 119, 724–733.PubMedGoogle Scholar
  38. Dohi T., Fujihashi K., Rennert P. D., Iwatani K., Kiyono H., and McGhee J. R. (1999) Hapten-induced colitis is associated with colonic patch hypertrophy and T helper cell 2-type responses. J. Exp. Med. 189(8), 1169–1180.PubMedGoogle Scholar
  39. El-Salhy M., Danielsson A., Stenling R., and Grimelius L. (1997) Colonic endocrine cells in inflammatory bowel disease. J. Intern. Med. 242, 413–419.PubMedGoogle Scholar
  40. Ferguson S. A., Paule M. G., and Holson R. R. (2001) Neonatal dxamethasone on day 7 in rats causes behavioral alterations reflective of hippocampal, but not cerebelar, deficits. Neurotoxicol. Teratol. 23, 57–69.PubMedGoogle Scholar
  41. Forrester J. S. (2004) Common ancestors: chronic progressive diseases have the same pathogenesis. Clin. Cardiol. 27, 186–190.PubMedGoogle Scholar
  42. Francis D. D., Young L. J., Meaney M. J., and Insel T. R. (2002) Naturally occurring differences in maternal care are associated with the expression of oxytocin and vasopressin (V1a) receptors: gender differences. J. Neuroendocrinol. 14, 349–353.PubMedGoogle Scholar
  43. Fuxe K., Andersson K., Hokfelt T., Mutt V., Ferland L., Agnati L. F., et al. (1979) Localization and possible function of peptidergic neurons and their interactions with central catecholamine neurons, and the central actions of gut hormones. Fed. Proc. 38, 2333–2340.PubMedGoogle Scholar
  44. Gandhi S., Tsueshita T., Onyuksel H., Chandiwala R., and Rubinstein I. (2002) Interactions of human secretin with sterically stabilized phospholipid micelles amplify peptide-induced vasodilation in vivo. Peptides 23, 1433–1439.PubMedGoogle Scholar
  45. Green L., Fein D., Modahl C., Feinstein C., Waterhouse L., and Morris M. (2001) Oxytocin and autistic disorder: alterations in peptide forms. Biol. Psychiatry 50, 609–613.PubMedGoogle Scholar
  46. Gupta S. (2000) Immunological treatments for autism. J. Autism Dev. Disord. 30, 475–479.PubMedGoogle Scholar
  47. Gupta S., Aggarwal S., Rashanravan B., and Lee T. (1998) Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism. J. Neuroimmunol. 85, 106–109.PubMedGoogle Scholar
  48. Haraldsen L., Soderstrom-Lauritzsen V., and Nilsson G. E. (2002) Oxytocin stimulates cerebral blood flow in rainbow trout (Oncorhynchus mykiss) through a nitric oxide dependent mechanism. Brain Res. 929, 10–14.PubMedGoogle Scholar
  49. Hatton G. I., Modney B. K., and Salm A. K. (1992) Increases in dendritic bundling and dye coupling of supraoptic neurons after the induction of maternal behavior. Ann. N. Y. Acad. Sci. 12, 142–155.Google Scholar
  50. Haxby J. V., Hoffman E. A., and Gobbini M. I. (2002) Human neural systems for face recognition and social communication. Biol. Psychiatry 51, 59–67.PubMedGoogle Scholar
  51. Herbert M. R., Ziegler D. A., Makris N., Filipek P. A., Kemper T. L., Normandin J. J., et al. (2004) Localization of white matter volume increase in autism and developmental language disorder. Ann. Neurol. 55, 530–540.PubMedGoogle Scholar
  52. Hofer M. A. (1994a) Early relationships as regulators of infant physiology and behavior. Acta Paediatr. Suppl. 397, 9–18.PubMedGoogle Scholar
  53. Hofer M. A. (1994b) Hidden regulators in attachment, separation, and loss. Monogr. Soc. Res. Child Dev. 59, 192–207.PubMedGoogle Scholar
  54. Hofer M. A. (1996) On the nature and consequences of early loss. Psychosom. Med. 58, 570–581.PubMedGoogle Scholar
  55. Hollander E., Novotny S., Hanratty M., Yaffe R., DeCaria C. M., Aronowitz B. R., and Mosovich S. (2003) Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger’s disorders. Neuropsychopharmacology 28, 193–198.PubMedGoogle Scholar
  56. Horvath K., Stefanatos G., Sokolski K. N., Wachtel R., Nabors L., and Tildon J. T. (1998) Improved social and language skills after secretin administration in patients with autistic spectrum disorders. J. Assoc. Acad. Minor. Phys. 9, 9–15.PubMedGoogle Scholar
  57. Howard M. A., Cowell P. E, Boucher J., Broks P., Mayes A., Farrant A., and Roberts N. (2000) Convergent neuroanatomical and behavioural evidence of an amygdala hypothesis of autism. Neuroreport 11, 2931–2935.PubMedGoogle Scholar
  58. Iijima H., Takahashi I., Kishi D., Kim J. K., Kawano S., Hori M., and Kiyono H. (1999) Alteration of interleukin 4 production results in the inhibition of T helper type 2 cell-dominated inflammatory bowel disease in T cell receptor alpha chain-deficient mice. J. Exp Med. 190, 607–615.PubMedGoogle Scholar
  59. Insel T. R. and Fernald R. D. (2004) How the brain processes social information: searching for the social brain. Annu. Rev. Neurosci. 27, 697–722.PubMedGoogle Scholar
  60. Jankowski M., Wang D., Hajjar F., Mukaddam-Daher S., McCann S. M., and Gutkowska J. (2000) Oxytocin and its receptors are synthesized in the rat vasculature. Proc. Natl. Acad. Sci. U. S. A. 97, 6207–6211.PubMedGoogle Scholar
  61. Jyonouchi H., Sun S., and Itokazu N. (2002) Innate immunity associated with inflammatory responses and cytokine production against common dietary proteins in patients with autism spectrum disorder. Neuropsychobiology 46, 76–84.PubMedGoogle Scholar
  62. Kalin N. H., Larson C., Shelton S. E., and Davidson R. J. (1998) Asymmetric frontal brain activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys. Behav. Neurosci. 112, 286–292.PubMedGoogle Scholar
  63. Kandel E. and Abel T. (1995) Neuropeptides, adenylyl cyclase, and memory storage. Science 268, 825,826.PubMedGoogle Scholar
  64. Kawasaki Y., Yokota K., Shinomiya M., Shimizu Y., and Niwa S. (1997) Brief report: electroencephalographic paroxysmal activities in the frontal area emerged in middle childhood and during adolescence in a follow-up study of autism. J. Autism Dev. Disord. 27, 605–620.PubMedGoogle Scholar
  65. Kern J. K. (2003) Purkinje cell vulnerability and autism: a possible etiological connection. Brain Dev. 25, 377–382.PubMedGoogle Scholar
  66. Kern J. K., Espinoza E., and Trivedi M. H. (2004) The effectiveness of secretin in the management of autism. Expert Opin. Pharmacother. 5, 379–387.PubMedGoogle Scholar
  67. Kimura M., Masuda T., Hiwatashi N., Toyota T., and Nagura H. (1994) Changes in neuropeptide-containing nerves in human colonic mucosa with inflammatory bowel disease. Pathol. Int. 44, 624–634.PubMedCrossRefGoogle Scholar
  68. Koren G. (2001) Repeated doses of porcine secretin in the treatment of autism: a randomized, placebo-controlled trial. Pediatrics 107, E71.Google Scholar
  69. Koves K., Kausz M., Reser D., Illyes G., Takacs J., Heinzlmann A., et al. (2004) Secretin and autism: a basic morphological study about the distribution of secretin in the nervous system. Regul. Pept. 123, 209–216.PubMedGoogle Scholar
  70. Kucharzik T., Lugering N., Adolf M., Domschke W., and Stoll R. (1997) Synergistic effect of immunoregulatory cytokines on peripheral blood monocytes from patients with inflammatory bowel disease. Dig. Dis. Sci. 4, 805–812.Google Scholar
  71. Kulman G., Lissoni P., Rovelli F., Roselli M.G., Brivio F., and Sequeri P. (2000) Evidence of pineal endocrine hypofunction in autistic children. Neurol. Endocrinol. Lett. 21, 31–34.Google Scholar
  72. Kuntz A., Clement H. W., Lehnert W., Van Calker D., Hennighausen K., Gerlach M., and Schulz E. (2004) Effects of secretin on extracellular amino acid concentrations in rat. J. Neural Transm. 111, 931–939.PubMedGoogle Scholar
  73. Lamson D. W. and Plaza S. M. (2001) Transdermal secretin for autism—a case report. Altern. Med. Rev. 6, 311–313.PubMedGoogle Scholar
  74. Leventhal B. L., Cook E. H. Jr, Morford M., Ravitz A., and Freedman D. X. (1990) Relationships of whole blood serotonin and plasma norepinephrine within families. J. Autism Dev. Disord. 20, 499–511.PubMedGoogle Scholar
  75. Lewine J. D., Andrews R., Chez M., Patil A. A., Devinsky O., Smith M., et al. (1999) Magnetoencephalographic patterns of epileptiform activity in children with regressive autism spectrum disorders. Pediatrics 104, 405–418.PubMedGoogle Scholar
  76. Licinio J., Alvarado I., and Wong M. L. (2002) Autoimmunity in autism. Mol. Psychiatry 7, 329.PubMedGoogle Scholar
  77. Lightdale J. R., Hayer C., Duer A., Lind-White C., Jenkins S., Siegel B., et al. (2001) Effects of intravenous secretin on language and behavior of children with autism and gastrointestinal symptoms: a single-blinded, open-label pilot study. Pediatrics 108, 90.Google Scholar
  78. Linden D. R., Chen J. X., Gershon M. D., Sharkey K. A., and Mawe G. M. (2003) Serotonin availability is increased in mucosa of guinea pigs with TNBS-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G207–216.PubMedGoogle Scholar
  79. Lossos A., River Y., Eliakim A., and Steiner I. (1995) Neurologic aspects of inflammatory bowel disease. Neurology 45, 416–421.PubMedGoogle Scholar
  80. Lucas A., Adrian T. E., Bloom S. R., and Aynsley-Green A. (1980) Plasma secretin in neonates. Acta Paediatr. Scand. 69, 205–210.PubMedGoogle Scholar
  81. Martin-Ruiz C. M., Lee M., Perry R. H., Baumann M., Court J. A., and Perry E. K. (2004) Molecular analysis of nicotinic receptor expression in autism. Brain Res. Mol. Brain Res. 123, 81–90.PubMedGoogle Scholar
  82. Mash E. J. and Barkley R. A., eds. (2003) Child Psychopathology, 2nd ed., Guilford Press, New York.Google Scholar
  83. Matri S., Boubaker J., Hamzaoui S., Bardi R., Ayed K., and Filali A. (2003) The role of major histocompatibility complex genes in the pathogenesis of chronic inflammatory bowel diseases. Tunis. Med. 81, 289–294.PubMedGoogle Scholar
  84. Matthiesen A. S., Ransjo-Arvidson A. B., Nissen E., and Uvnas-Moberg K. (2001) Postpartum maternal oxytocin release by newborns: effects of infant hand massage and sucking. Birth 28, 13–19.PubMedGoogle Scholar
  85. Meaney M. J. (2004) Environmental ‘Programming’ of Individual Differences in Defensive and Reproductive Behaviors Through Maternal Effects on Chromatin Structure and Gene Expression. Prog. # 591. 2004 Abstracts. Washington, DC: Society for Neuroscience On-Line.Google Scholar
  86. Meaney M. J., Aitken D. H., van Berkel C., Bhatnagar S., and Sapolsky R. M. (1988) Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239, 766–768.PubMedGoogle Scholar
  87. Menold M. M., Shao Y., Wolpert C. M., Donnelly S. L., Raiford K. L., Martin E. R., et al. (2001) Association analysis of chromosome 15 GABAA receptor subunit genes in autistic disorder. J. Neurogenet. 15, 245–259.PubMedCrossRefGoogle Scholar
  88. Morgan J. I. and Curran T. (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu. Rev. Neurosci. 14, 421–451.PubMedGoogle Scholar
  89. Morris G. P., Beck P. L., Herridge M. S., Depew W. T., Szewczuk M. R., and Wallace J. L. (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96, 795–803.PubMedGoogle Scholar
  90. Muller R. A., Cauich C., Rubio M. A., Mizuno A., and Courchesne E. (2004) Abnormal activity patterns in premotor cortex during sequence learning in autistic patients. Biol. Psychiatry 56, 323–332.PubMedGoogle Scholar
  91. Myers K., Goulet M., Rusche J., Boismenu R., and Davis M. (2004) Inhibition of fear potentiated startle in rats following peripheral administration of secretin. Psychopharmacology (Berl.) 172, 94–99.Google Scholar
  92. Nelson K. B., Grether J. K., Croen L. A., Dambrosia J. M., Dickens B. F., Jelliffe L. L., et al. (2001) Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann. Neurol. 49, 597–606.PubMedGoogle Scholar
  93. Ogai M., Matsumoto H., Suzuki K., Ozawa F., Fukuda R., Uchiyama I., et al. (2003) fMRI study of recognition of facial expressions in high-functioning autistic patients. Neuroreport 14, 559–563.PubMedGoogle Scholar
  94. Owley T., McMahon W., Cook E. H., Laulhere T., South M., Mays L. Z., et al. (2001) Multisite, double-blind, placebo-controlled trial of porcine secretin in autism. J. Am. Acad. Child Adolesc. Psychiatry 40, 1293–1299.PubMedGoogle Scholar
  95. Pedersen C. A. and Boccia M. L. (2002) Oxytocin links mothering received, mothering bestowed and adult stress responses. Stress 5, 259–267.PubMedGoogle Scholar
  96. Pelphrey K. A., Sasson N. J., Reznick J. S., Paul G., Goldman B. D., and Piven, J. (2002) Visual scanning of faces in autism. J. Autism Dev. Disord. 2, 249–261.Google Scholar
  97. Popovic M., Popovic N., Eric-Jovicic M., and Jovanova-Nesic K. (1999) Immune responses in nucleus basalis magnocellularis-lesioned rats exposed to chronic isolation stress. Int. J. Neurosci. 100, 125–131.PubMedGoogle Scholar
  98. Porges S. W. (2001) The polyvagal theory: phylogenetic substrates of a social nervous system. Int. J. Psychophysiol. 42, 123–146.PubMedGoogle Scholar
  99. Richdale A. L. and Prior M. R. (1992) Urinary cortisol circadian rhythm in a group of high-functioning children with autism. J. Autism Dev. Disord. 22, 433–447.PubMedGoogle Scholar
  100. Ringel Y. and Drossman D. A. (2002) Irritable bowel syndrome: classification and conceptualization. J. Clin. Gastroenterol. 35, S7–10.PubMedCrossRefGoogle Scholar
  101. Ringel Y. and Drossman D. A. (2001) Psychosocial aspects of Crohn’s disease. Surg. Clin. North Am. 81, 231–252.PubMedGoogle Scholar
  102. Roberts W., Weaver L., Brian J., Bryson S., Emelianova S., Griffiths A. M., et al. (2001) Homeopathic secretin in autism: a clinical pilot study. Br. Homeopath. J. 90, 86–91.Google Scholar
  103. Ruggiero D. A., Regunathan S., Wang H., Milner T. A., and Reis D. J. (1998) Immunocytochemical localization of an imidazoline receptor protein in the central nervous system. Brain Res. 780, 270–293.PubMedGoogle Scholar
  104. Rumsey J. M. and Ernst M. (2000) Functional neuroimaging of autistic disorders. Ment. Retard. Dev. Disabil. Res. Rev. 6, 171–179.PubMedGoogle Scholar
  105. Saitoh O., Courchesne E., Egaas B., Lincoln A. J., and Schreibman L. (1995) Cross-sectional area of the posterior hippocampus in autistic patients with cerebellar and corpus callosum abnormalities. Neurology 45, 317–324.PubMedGoogle Scholar
  106. Saitoh O., Karns C. M., and Courchesne E. (2001) Development of the hippocampal formation from 2 to 42 years: MRI evidence of smaller area dentata in autism. Brain 124, 1317–1324.PubMedGoogle Scholar
  107. Sandler A. D., Sutton K. A., DeWeese J., Girardi M. A., Sheppard V., and Bodfish J. W. (1999) Lack of benefit of a single dose of synthetic human secretin in the treatment of autism and pervasive developmental disorder. N. Engl. J. Med. 341, 1801–1806.PubMedGoogle Scholar
  108. Schumann C. M., Hamstra J., Goodlin-Jones B. L., Lotspeich L. J., Kwon H., Buonocore M. H., et al. (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J. Neurosci. 24, 6392–6401.PubMedGoogle Scholar
  109. Singh V. K. (1996) Plasma increase of interleukin-12 and interferon-gamma. Pathological significance in autism. J. Neuroimmunol. 66, 143–145.PubMedGoogle Scholar
  110. Sinha A., Nightingale J., West K. P., Berlanga-Acosta J., and Playford R. J. (2003) Epidermal growth factor enemas with oral mesalamine for mild-to-moderate left-sided ulcerative colitis or proctitis. N. Engl. J. Med. 349, 350–357.PubMedGoogle Scholar
  111. Sparks B. F., Friedman S. D., Shaw D. W., Aylward E. H., Echelard D., Artru A. A., et al. (2002) Brain structural abnormalities in young children with autism spectrum disorder. Neurology 59, 184–192.PubMedGoogle Scholar
  112. Swanson L. W. (1998) Structure of the Rat Brain, Elsevier Science B.V., Amsterdam, The Netherlands.Google Scholar
  113. Sweeten T. L., Bowyer S. L., Posey D. J., Halberstadt G. M., and McDougle C. J. (2003) Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders. Pediatrics 112, e420.Google Scholar
  114. Sweeten T. L., Posey D. J., Shankar S., and McDougle C. J. (2004) High nitric oxide production in autistic disorder: a possible role for interferon-gamma. Biol. Psychiatry 55, 434–437.PubMedGoogle Scholar
  115. Szatmari P. (1999) Heterogeneity and the genetics of autism. J. Psychiatry Neurosci. 24, 159–165.PubMedGoogle Scholar
  116. Teufel M., Luik G., and Niessen K. H. (1986) Gastrin, secretin, VIP and motilin in children with mucoviscidosis and Crohn disease. Monatsschr. Kinderheilkd. 134, 132–137.PubMedGoogle Scholar
  117. Tinbergen N. and Tinbergen E. A., eds. (1983) Autistic Children, New Hope for a Cure, George, Allen and Unwin, London, UK.Google Scholar
  118. Thuesen B., Schaffalitzky de Muckadell O. B., Holst J. J., and Bahnsen M. (1987) The relationship of secretin and somatostatin levels in plasma to glucose administration and acid secretion during fasting. Am. J. Gastroenterol. 82, 723–726.PubMedGoogle Scholar
  119. Tuchman R. and Rapin I. (2002) Epilepsy in autism. Lancet Neurol. 1, 352–358.PubMedGoogle Scholar
  120. Uno H., Tarara R., Else J. G., Suleman M. A., and Sapolsky R. M. (1989) Hippocampal damage associated with prolonged and fatal stress in primates. J. Neurosci. 9, 1705–1711.PubMedGoogle Scholar
  121. Uvnas-Moberg K. (1998a) Antistress pattern induced by oxytocin. News Physiol. Sci. 13, 22–25.PubMedGoogle Scholar
  122. Uvnas-Moberg K. (1997) Oxytocin linked antistress effects—the relaxation and growth response. Acta Physiol. Scand. Suppl. 640, 38–42.PubMedGoogle Scholar
  123. Uvnas-Moberg K. (1998b) Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology 23, 819–835.PubMedGoogle Scholar
  124. Uvnas-Moberg K, Bjorkstrand E, Salmi P, Johansson C, Astrand M, and Ahlenius S. (1999) Endocrine and behavioral traits in low-avoidance Sprague-Dawley rats. Regul. Pept. 80, 75–82.PubMedGoogle Scholar
  125. Vacher C. M., Fretier P., Creminon C., Calas A., and Hardin-Pouzet H. (2002) Activation by serotonin and noradrenaline of vasopressin and oxytocin expression in the mouse paraventricular and supraoptic nuclei. J. Neurosci. 22, 1513–1522.PubMedGoogle Scholar
  126. Vargas D. L., Nascimbene C., Krishnan C., Zimmerman A. W., and Pardo C. A. (2004) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 57, 67–81.Google Scholar
  127. Wakefield A. J., Anthony A., Murch S. H., Thomson M., Montgomery S. M., Davies S., et al. (2000) Enterocolitis in children with developmental disorders. Am. J. Gastroenterol. 95, 2285–2295.PubMedGoogle Scholar
  128. Weaver I. C., Cervoni N., Champagne F. A., D’Alessio A. C., Sharma S., Seckl J. R., et al. (2004) Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854.PubMedGoogle Scholar
  129. Weaver I. C., Grant R. J., and Meaney M. J. (2002) Maternal behavior regulates long-term hippocampal expression of BAX and apoptosis in the offspring. J. Neurochem. 82, 998–1002.PubMedGoogle Scholar
  130. Welch M. G. (1988) Holding Time, Simon and Schuster, New York.Google Scholar
  131. Welch M. G. (1989) Holding Time: How When Why. Proceedings of the First International Congress of Holding Therapy, Fireside, Regensberg, Germany.Google Scholar
  132. Welch M. G. (1983a) Retrieval from autism through mother-child holding, in Autistic Children, New Hope for a Cure, Tinbergen, N. and Tinbergen, E. A., eds., George, Allen and Unwin, London, UK.Google Scholar
  133. Welch M. G. (1983b) Retrieval from autism through mother-child holding therapy, in Frontiers of Infant Psychiatry, Call, J. D., Galenson, E., and Tyson, R. L., eds., Basic Books, New York.Google Scholar
  134. Welch M. G. (1987) Toward prevention of developmental disorders. Pa. Med. 90, 47–52.PubMedGoogle Scholar
  135. Welch M. G. and Chaput P. (1988) Mother-child holding therapy and autism. Pa. Med. 91, 33–38.PubMedGoogle Scholar
  136. Welch M. G. Keune J. D., Welch-Horan T. B., and Ruggiero D. A. (2002) Secretin in autism. Society for Neuroscience Press Book. II, Washington, DC: pp. 572–574.Google Scholar
  137. Welch M. G., Keune J. D., Welch-Horan T. B., Anwar N., Anwar M., Ruggiero D. A. (2003a) Secretin Activates Visceral Brain Regions in the Rat Including Areas Abnormal in Autism. Prog. #896.2 2002 Abstracts. Washington, DC: Society for Neuroscience Abstracts.Google Scholar
  138. Welch M. G., Keune J. D., Welch-Horan T. B., Anwar M., Anwar N., and Ruggiero D. A. (2003b) Secretin activates visceral brain regions in rat including areas abnormal in autism. Cell. Mol. Neurobiol. 23, 817–837.PubMedGoogle Scholar
  139. Welch M. G., Welch-Horan T. B., Keune J. D., Anwar N., Anwar M., Ludwig R. J., and Ruggiero D. A. (2003c) Neurohormonal Resolution of Genetic and Acquired IBD and Secondary Brain Activation in Areas Abnormal in Autism. Prog. # 318.5 2003 Abstracts. Washington, DC: Society for Neuroscience Abstracts.Google Scholar
  140. Welch M. G., Welch-Horan T. B., Anwar M., Keune J. D., Anwar N., Ludwig R. J., and Ruggiero D. A. (2004a) Secretin: hypothalamic distribution and hypothesized neuroregulatory role in autism. Cell. Mol. Neurobiol. 24, 219–241.PubMedGoogle Scholar
  141. Welch M. G., Welch-Horan T. B., Anwar M., Keune J. D., Anwar N., Ludwig R. J., et al. (2004b) Brain/gut peptides in developmental and inflammatory processes. FASEB Abstr. 833.19. 2004 Abstracts. Washington, DC: Federation of Affiliated Societies for Experimental Biology.Google Scholar
  142. Welch M. G., Welch-Horan T. B., Keune J. D., Anwar N., Anwar M., Ahmad A., et al. (2004c) Exogenous gut/brain neuropeptides in visceral/cerebral disease: relevance to IBD and autism? Prog. #761.16. Abstracts. Washington, DC: Society for Neuroscience Abstracts.Google Scholar
  143. Welch M. G., Welch-Horan T. B., Keune J. D., Anwar N., Anwar M., Ahmad A., et al. (2004d) Behavioral anatomy of intensive maternal nurturing in childhood disorders. Neuroscience Abstracts, 34th annual meeting.Google Scholar
  144. Welch M. G., Welch-Horan T. B., Anwar M., Ludwig R. J., Power S. A., and Ruggiero D. A. (2004e) Behavioral anatomy of intensive maternal nurturing in childhood disorders. Prog. # 801.18 2004 Abstracts. Washington, DC: Society for Neuroscience Abstracts.Google Scholar
  145. Welch M.G., Northrup R. S., Welch-Horan T. B., Ludwig R. J., Austin C. A., Jacobson J. S. (2004f) Outcomes of prolonged parent-child embrace therapy among 102 children with behavioral disorders, in preparation.Google Scholar
  146. Wen Z. and Fiocchi C. (2004) Inflammatory bowel disease: autoimmune or immune-mediated pathogenesis? Clin. Dev. Immunol. 11, 195–204.PubMedGoogle Scholar
  147. White J. F. Intestinal pathophysiology in autism. (2003) Exp. Biol. Med. 228, 639–649.Google Scholar
  148. Windle R. J. Kershaw Y. M., Shanks N., Wood S.A., Lightman S. L., and Ingram C. D. (2004) Oxytocin attenuates stress-induced c-fos mRNA expression in specific forebrain regions associated with modulation of hypothalamo-pituitary-adrenal activity. J. Neurosci. 24, 2974–2982.PubMedGoogle Scholar
  149. Winslow J. T. and Insel T. R. (2002) Neuroendocrine basis of social recognition. Curr. Opin. Neurobiol. 14, 248–253.Google Scholar
  150. Yirmiya N., Pilowsky T., Nemanov L., Arbelle S., Feinsilver T., Fried I., and Ebstein R. P. (2001) Evidence for an association with the serotonin transporter promoter region polymorphism and autism. Am. J. Med. Genet. 105, 381–386.PubMedGoogle Scholar
  151. Zaninetti M. and Raggenbass M. (2000) Oxytocin receptor agonists enhance inhibitory synaptic transmission in the rat hippocampus by activating interneurons in stratum pyramidale. Eur. J. Neurosci. 12, 3975–3984.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Martha G. Welch
    • 1
  • Thomas B. Welch-Horan
    • 1
  • Muhammad Anwar
    • 1
  • Nargis Anwar
    • 1
  • Robert J. Ludwig
    • 1
  • David A. Ruggiero
    • 1
    • 2
  1. 1.Department of Psychiatry, Division of NeuroscienceColumbia University College of Physicians and SurgeonsNew York
  2. 2.Department of Anatomy and Cell BiologyColumbia University College of Physicians and SurgeonsNew York

Personalised recommendations