Advertisement

Journal of Molecular Neuroscience

, Volume 25, Issue 2, pp 191–200 | Cite as

Trafficking of adenosine A2A and dopamine D2 receptors

  • Maria Torvinen
  • Carla Torri
  • Andrea Tombesi
  • Daniel Marcellino
  • Stan Watson
  • Carmen Lluis
  • Rafael Franco
  • Kjell Fuxe
  • Luigi F. Agnati
Original Article

Abstract

An interaction between adenosine A2A and dopamine D2 receptors has been demonstrated previously. It is generally found that agonist treatment internalizes receptors, including A2A and D2, whereas less is known of the long-term effects involved in the agonist-mediated trafficking of A2A and D2 receptors. Furthermore, the possible influence of the antagonists on receptor trafficking is still undefined. The present studies focus on the long-term effects of A2A and D2 agonist and D2 antagonist treatments on both A2A and D2 receptor trafficking studied at three different time intervals—3, 15, and 24 h. In addition, with the fluorescence resonance energy transfer technique, formation of heteromeric A2A and D2 receptor complexes was shown in the cotransfected CHO cell line. Confocal microscopy analysis showed that a 3-h treatment with the D2 agonist induced coaggregation of A2A/D2 receptors. These A2A/D2 receptor coaggregates internalized after 15 h with a recruitment of the receptors back to the cell membrane after 24 h. In contrast to the effects of the agonist treatment, a 3-h treatment with the D2-like antagonist raclopride increased both A2A and D2 immunoreactivity, indicating that the D2 antagonist stabilizes the D2 receptor and thereby reduces the internalization of both of the A2A and D2 receptors. Taken together, an activation of either A2A and D2 receptor or blockade of D2 receptors will cause long-lasting changes in A2A and D2 receptor trafficking.

Index Entries

Adenosine dopamine CHO cell line long-term effects heterodimer trafficking antagonist 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnati L. F., Ferre S., Lluis C., Franco R., and Fuxe K. (2003) Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol. Rev. 55(3), 509–550.PubMedCrossRefGoogle Scholar
  2. Bjelke B., Goldstein M., Tinner B., Andersson C., Sesack S. R., Steinbusch H. W., et al. (1996) Dopaminergic transmission in the rat retina: evidence for volume transmission. J. Chem. Neuroanat. 12(1), 37–50.PubMedCrossRefGoogle Scholar
  3. Bouvier M. (2001) Oligomerization of G-protein-coupled transmitter receptors. Nat. Rev. Neurosci. 2(4), 274–286.PubMedCrossRefGoogle Scholar
  4. Canals M., Marcellino D., Fanelli F., Ciruela F., de Benedetti P., Goldberg S. R., et al. (2003) Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminiscence energy transfer. J. Biol. Chem. 278(47), 46741–46749.PubMedCrossRefGoogle Scholar
  5. Ferguson S. S., Barak L. S., Zhang J., and Caron M. G. (1996a) G-protein-coupled receptor regulation: role of G-protein-coupled receptor kinases and arrestins. Can. J. Physiol. Pharmacol. 74(10), 1095–1110.PubMedCrossRefGoogle Scholar
  6. Ferguson S. S., Downey W. E., Colapietro A. M., Barak L. S., Menard L., and Caron M. G. (1996b) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271(5247), 363–366.PubMedCrossRefGoogle Scholar
  7. Franco R., Canals M., Marcellino D., Ferre S., Agnati L., Mallol J., et al. (2003) Regulation of heptaspanning-membrane-receptor function by dimerization and clustering. Trends Biochem. Sci. 28(5), 238–243.PubMedCrossRefGoogle Scholar
  8. Fuxe K., Agnati L. F., Jacobsen K., Hillion J., Canals M., Torvinen M., et al. (2003) Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology 61(11 Suppl 6), S19-S23.PubMedGoogle Scholar
  9. Goodman O. B. Jr., Krupnick J. G., Santini F., Gurevich V. V., Penn R. B., Gagnon A. W., et al. (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383(6599), 447–450.PubMedCrossRefGoogle Scholar
  10. Hillion J. A., Canals M., Torvinen M., Casado V., Scott R., Terasmaa A., et al. (2002) Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J. Biol. Chem. 28, 28.Google Scholar
  11. Ito K., Haga T., Lameh J., and Sadee W. (1999) Sequestration of dopamine D2 receptors depends on coexpression of G-protein-coupled receptor kinase 2 or 5. Eur. J. Biochem. 260(1), 112–119.PubMedCrossRefGoogle Scholar
  12. Iwata K., Ito K., Fukuzaki A., Inaki K., and Haga T. (1999) Dynamin and rab5 regulate GRK2-dependent internalization of dopamine D2 receptors. Eur. J. Biochem. 263(2), 596–602.PubMedCrossRefGoogle Scholar
  13. Kamiya T., Saitoh O., Yoshioka K., and Nakata H. (2003) Oligomerization of adenosine A2A and dopamine D2 receptors in living cells. Biochem. Biophys. Res. Commun. 306(2), 544–549.PubMedCrossRefGoogle Scholar
  14. Krupnick J. G. and Benovic J. L. (1998) The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol. 38, 289–319.PubMedCrossRefGoogle Scholar
  15. Lefkowitz R. J. (1998) G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J. Biol. Chem. 273(30), 18677–18680.PubMedCrossRefGoogle Scholar
  16. Lohse M. J., Benovic J. L., Codina J., Caron M. G., and Lefkowitz R. J. (1990) Beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248(4962), 1547–1550.PubMedCrossRefGoogle Scholar
  17. Marshall F. H. (2001) Heterodimerization of G-protein-coupled receptors in the CNS. Curr. Opin. Pharmacol. 1(1), 40–44.PubMedCrossRefGoogle Scholar
  18. Milligan G., Ramsay D., Pascal G., and Carrillo J. J. (2003) GPCR dimerisation. Life Sci. 74(2–3), 181–188.PubMedCrossRefGoogle Scholar
  19. Mundell S. J., Benovic J. L., and Kelly E. (1997) A dominant negative mutant of the G protein-coupled receptor kinase 2 selectively attenuates adenosine A2 receptor desensitization. Mol. Pharmacol. 51(6), 991–998.PubMedGoogle Scholar
  20. Torvinen M., Kozell L. B., Neve K. A., Agnati L. F., and Fuxe K. (2004) Biochemical identification of the dopamine D2 receptor domains interacting with the adenosine A2A receptor. J. Mol. Neurosci., 24(2), 173–180.PubMedCrossRefGoogle Scholar
  21. Willets J. M., Parent J. L., Benovic J. L., and Kelly E. (1999) Selective reduction in A2 adenosine receptor desensitization following antisense-induced suppression of G protein-coupled receptor kinase 2 expression. J. Neurochem. 73(5), 1781–1789.PubMedCrossRefGoogle Scholar
  22. Zimmermann T., Rietdorf J., Girod A., Georget V., and Pepperkok R. (2002) Spectral imaging and linear unmixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett. 531(2), 245–249.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Maria Torvinen
    • 1
  • Carla Torri
    • 2
  • Andrea Tombesi
    • 2
  • Daniel Marcellino
    • 3
  • Stan Watson
    • 4
  • Carmen Lluis
    • 3
  • Rafael Franco
    • 3
  • Kjell Fuxe
    • 1
  • Luigi F. Agnati
    • 2
  1. 1.Department of NeuroscienceKarolinska InstituteStockholmSweden
  2. 2.Department of Biomedical SciencesUniversity of ModenaModenaItaly
  3. 3.Department of Biochemistry and Molecular BiologyUniversity of BarcelonaBarcelonaSpain
  4. 4.Mental Health InstituteUniversity of MichiganAnn Arbor

Personalised recommendations