Advertisement

Journal of Molecular Neuroscience

, Volume 25, Issue 1, pp 37–51 | Cite as

A TASK3 channel (KCNK9) mutation in a genetic model of absence epilepsy

  • Jethro HolterEmail author
  • David Carter
  • Nathalie Leresche
  • Vincenzo Crunelli
  • Pierre Vincent
Original Article Receptors And Channels

Abstract

Childhood absence epilepsy is an idiopathic, generalized, nonconvulsive epilepsy with a multifactorial genetic etiology. The KCNK9 gene coding for the TASK3 (Twik-like acid-sensitive K +) channel is present on chromosome 8 at position 8q24, a locus that has shown positive linkage to the human absence epilepsy phenotype. Sequencing of the KCNK9 gene in the genetic absence epilepsy rats from Strasbourg (GAERS), a well established genetic model of this disease, reveals an additional alanine residue in a polyalanine tract within the C-terminal intracellular domain. This additional alanine is absent in the inbred nonepileptic control (NEC) strain, Wistar, and Wistar albino Glaxo strain bred in Rijswijk, another inbred rat model of absence epilepsy. Expression of the mutant channel in CHO cells produces a K+ current that is blocked by acidic pH and millimolar concentrations of barium or ruthenium red and is not different from the wild-type channel. In brain slices, thalamic neurons display a prominent pH-sensitive tonic K+ current, but no difference was observed between GAERS and NEC or Wistar rats. Ruthenium red had no effect in cortical, reticular thalamic, or sensory thalamic neurons in either GAERS or NEC, indicating that the TASK3 homodimer is not present in these structures. Twik-like acid-sensitive K+ (TASK3) channels, therefore, are probably associated with TASK1 to form ruthenium red-insensitive heterodimers in these neurons. Finally, no difference was found between GAERS and NEC rats in the modulation of the leak K+ current following activation of muscarinic receptors. These studies describe the first mutation found in a genetic model of absence epilepsy. Although our experiments showed no difference in the leak K+ current between GAERS and NEC rats, further work is needed to ascertain whether this mutation contributes to the generation of absence seizures, possibly by mechanisms related to the expansion of the polyalanine run.

Index Entries

Thalamus absence epilepsy potassium channels pH muscarinic response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbuti A., Ishii S., Shimizu T., Robinson R. B., and Feinmark S. J. (2002) Block of the background K(+) channel TASK-1 contributes to arrhythmogenic effects of plateletactivating factor. Am. J. Physiol. Heart Circ. Physiol. 282, H2024-H2030.PubMedGoogle Scholar
  2. Brown L. Y. and Brown S. A. (2004) Alanine tracts: the expanding story of human illness and trinucleotide repeats. Trends Genet. 20, 51–58.PubMedCrossRefGoogle Scholar
  3. Chapman C. G., Meadows H. J., Godden R. J., Campbell D. A., Duckworth M., Kelsell R. E., et al. (2000) Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. Brain Res. Mol. Brain Res. 82, 74–83.PubMedCrossRefGoogle Scholar
  4. Chemin J., Girard C., Duprat F., Lesage F., Romey G., and Lazdunski M. (2003) Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels. EMBO J. 22, 5403–5411.PubMedCrossRefGoogle Scholar
  5. Chomczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction. Anal. Biochem. 162, 156–159.PubMedCrossRefGoogle Scholar
  6. Coenen A. M., Drinkenburg W. H., Inoue M., and van L. E. L. (1992) Genetic models of absence epilepsy, with emphasis on the WAG/Rij strain of rats. Epilepsy Res. 12, 75–86.PubMedCrossRefGoogle Scholar
  7. Crunelli V. and Leresche N. (2002) Childhood absence epilepsy: genes, channels, neurons and networks. Nat. Rev. Neurosci. 3, 371–382.PubMedCrossRefGoogle Scholar
  8. Czirjak G. and Enyedi P. (2002a) Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J. Biol. Chem. 277, 5426–5432.PubMedCrossRefGoogle Scholar
  9. Czirjak G. and Enyedi P. (2002b) TASK-3 dominates the background potassium conductance in rat adrenal glomerulosa cells. Mol. Endocrinol. 16, 621–629.PubMedCrossRefGoogle Scholar
  10. Czirjak G. and Enyedi P. (2003) Ruthenium red inhibits TASK-3 potassium channel by interconnecting glutamate 70 of the two subunits. Mol. Pharmacol. 63, 646–652.PubMedCrossRefGoogle Scholar
  11. Czirjak G., Fischer T., Spat A., Lesage F., and Enyedi P. (2000) TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II. Mol. Endocrinol. 14, 863–874.PubMedCrossRefGoogle Scholar
  12. Czirjak G., Petheo G. L., Spat A., and Enyedi P. (2001) Inhibition of TASK-1 potassium channel by phospholipase C. Am. J. Physiol. Cell. Physiol. 281, C700–708.PubMedGoogle Scholar
  13. Danober L., Deransart C., Depaulis A., Vergnes M., and Marescaux C. (1998) Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog. Neurobiol. 55, 27–57.PubMedCrossRefGoogle Scholar
  14. Devinsky O., Paraiso J. O., Rosenberg A., and Nordli D. R. (1997) Procedures in patients with epilepsy, in Epilepsy: A Comprehensive Textbook, vol. 2, Engel, J., Jr., and Pedley, T. A., eds., Lippincott-Raven, Philadelphia, PA, pp. 1977–1987.Google Scholar
  15. Dutuit M., Didier-Bazes M., Vergnes M., Mutin M., Conjard A., Akaoka H., et al. (2000) Specific alteration in the expression of glial fibrillary acidic protein, glutamate dehydrogenase, and glutamine synthetase in rats with genetic absence epilepsy. Glia 32, 15–24.PubMedCrossRefGoogle Scholar
  16. Edwards F. A., Konnerth A., Sakmann B., and Takahashi T. (1989) A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflüg. Arch. Eur. J. Physiol. 414, 600–612.CrossRefGoogle Scholar
  17. Fong G. C., Shah P. U., Gee M. N., Serratosa J. M., Castroviejo I. P., Khan S., et al. (1998) Childhood absence epilepsy with tonic-clonic seizures and electroencephalogram 3-4-Hz spike and multispike-slow wave complexes: linkage to chromosome 8q24. Am. J. Hum. Genet. 63, 1117–1129.PubMedCrossRefGoogle Scholar
  18. Goldstein S. A., Bockenhauer D., O’Kelly I., and Zilberberg N. (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat. Rev. Neurosci. 2, 175–184.PubMedCrossRefGoogle Scholar
  19. Han J., Truell J., Gnatenco C., and Kim D. (2002) Characterization of four types of background potassium channels in rat cerebellar granule neurons. J. Physiol. 542, 431–444.PubMedCrossRefGoogle Scholar
  20. Harks E. G., Camina J. P., Peters P. H., Ypey D. L., Scheenen W. J., van Scheenen Z. E. J., and Theuvenet A. P. (2003) Besides affecting intracellular calcium signaling, 2-APB reversibly blocks gap junctional coupling in confluent monolayers, thereby allowing measurement of singlecell membrane currents in undissociated cells. FASEB J. 17, 941–943.PubMedGoogle Scholar
  21. Heginbotham L., Lu Z., Abramson T., and MacKinnon R. (1994) Mutations in the K+ channel signature sequence. Biophys. J. 66, 1061–1067.PubMedCrossRefGoogle Scholar
  22. Holter J. L., Humphries A., Crunelli V., and Carter D. A. (2001) Optimisation of methods for selecting candidate genes from cDNA array screens: application to rat brain punches and pineal. J. Neurosci. Methods 112, 173–184.PubMedCrossRefGoogle Scholar
  23. Kananura C., Sander T., Rajan S., Presig-Muller R., Grzeschik K. H., Daut J., et al. (2002) Tandem pore domain K(+)-channel TASK-3 (KCNK9) and idiopathic absence epilepsies. Am. J. Med. Genet. 114, 227–229.PubMedCrossRefGoogle Scholar
  24. Karschin C., Wischmeyer E., Preisig-Muller R., Rajan S., Derst C., Grzeschik K. H., et al. (2001) Expression pattern in brain of TASK-1, TASK-3, and a tandem pore domain K(+) channel subunit, TASK-5, associated with the central auditory nervous system. Mol. Cell. Neurosci. 18, 632–648.PubMedCrossRefGoogle Scholar
  25. Kim Y., Bang H., and Kim D. (2000) TASK-3, a new member of the tandem pore K+ channel family. J. Biol. Chem. 275, 9340–9347.PubMedCrossRefGoogle Scholar
  26. Lauritzen I., Zanzouri M., Honoré E., Duprat F., Ehrengruber M. U., Lazdunski M., and Patel A. J. (2003) K+-dependent cerebellar granule neuron apoptosis: role of TASK leak K+ channels. J. Biol. Chem. Google Scholar
  27. Lesage F. and Lazdunski M. (2000) Molecular and functional properties of two-pore-domain potassium channels. Am. J. Physiol. Renal Physiol. 279, F793–801.PubMedGoogle Scholar
  28. Marescaux C., Vergnes M., and Depaulis A. (1992) Genetic absence epilepsy in rats from Strasbourg—a review. J. Neural Transm. Suppl. 35, 37–69.PubMedGoogle Scholar
  29. Meadows H. J. and Randall A. D. (2001) Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel. Neuropharmacology 40, 551–559.PubMedCrossRefGoogle Scholar
  30. Medhurst A. D., Rennie G., Chapman C. G., Meadows H., Duckworth M. D., Kelsell R. E., et al. (2001) Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Brain Res. Mol. Brain Res. 86, 101–14.PubMedCrossRefGoogle Scholar
  31. Meuth S. G., Budde T., Kanyshkova T., Broicher T., Munsch T., and Pape H. C. (2003) Contribution of TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons. J. Neurosci. 23, 6460–6469.PubMedGoogle Scholar
  32. Millar J. A., Barratt L., Southan A. P., Page K. M., Fyffe R. E. W., Robertson B., and Mathie A. (2000) A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc. Natl. Acad. Sci. U. S. A. 97, 3614–3618.PubMedCrossRefGoogle Scholar
  33. Mouritzen-Dam A., Moller A., Scheel-Kruger J., Jensen L. H., Marescaux C., and Vergnes M. (1996) Total number of neurons in the ventro-lateral/posterior thalamic nuclei in a genetic petit mal-like rat strain. Epilepsy Res. Suppl. 12, 303–307.PubMedGoogle Scholar
  34. Mu D., Chen L., Zhang X., See L. H., Koch C. M., Yen C., et al. (2003) Genomicamplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 3, 297–302.PubMedCrossRefGoogle Scholar
  35. Munsch T. and Pape H. C. (1999) Modulation of the hyperpolarization-activated cation current of rat thalamic relay neurones by intracellular pH. J. Physiol. (Lond.) 519, 493–504.CrossRefGoogle Scholar
  36. Nehlig A., Vergnes M., Boyet S., and Marescaux C. (1998a) Metabolic activity is increased in discrete brain regions before the occurrence of spike-and-wave discharges in weanling rats with genetic absence epilepsy. Brain Res. Dev. Brain Res. 108, 69–75.PubMedCrossRefGoogle Scholar
  37. Nehlig A., Vergnes M., Boyet S., and Marescaux C. (1998b) Local cerebral glucose utilization in adult and immature GAERS. Epilepsy Res. 32, 206–212.PubMedCrossRefGoogle Scholar
  38. Panayiotopoulos C. P. (1997) Absence epilepsies, in Epilepsy: A Comprehensive Textbook, vol. 3, Engel, J., Jr., and Pedley, T. A., eds., Lippincott-Raven, Philadelphia, PA, pp. 2327–2346.Google Scholar
  39. Patel A. J. and Honoré E. (2001) Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci. 24, 339–346.PubMedCrossRefGoogle Scholar
  40. Pei L., Wiser O., Slavin A., Mu D., Powers S., Jan L. Y., and Hoey T. (2003) Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. Proc. Natl. Acad. Sci. U. S. A. 100, 7803–7807.PubMedCrossRefGoogle Scholar
  41. Perrier J. F., Alaburda A., and Hounsgaard J. (2003) 5-HT1A receptors increase excitability of spinal motoneurons by inhibiting a TASK-1-like K+ current in the adult turtle. J. Physiol. 548, 485–492.PubMedCrossRefGoogle Scholar
  42. Rajan S., Preisig-Muller R., Wischmeyer E., Nehring R., Hanley P. J., Renigunta V., et al. (2002) Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J. Physiol. 545, 13–26.PubMedCrossRefGoogle Scholar
  43. Rajan S., Wischmeyer E., Xin Liu G., Preisig-Muller R., Daut J., et al. (2000) TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histidine as pH sensor. J. Biol. Chem. 275, 16,650–16,667.Google Scholar
  44. Sabers A., Moller A., Scheel-Kruger J., and Mouritzen D. A. (1996) No loss in total neuron number in the thalamic reticular nucleus and neocortex in the genetic absence epilepsy rats from Strasbourg. Epilepsy Res. 26, 45–48.PubMedCrossRefGoogle Scholar
  45. Sirois J. E., Lynch C. III, and Bayliss D. A. (2002) Convergent and reciprocal modulation of a leak K+ current and Ih by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones. J. Physiol. (Lond.) 541, 717–729.CrossRefGoogle Scholar
  46. Steriade M., Contreras D., and Amzica F. (1994) Synchronized sleep oscillations and their paroxysmal developments. Trends Neurosci. 17, 199–208.PubMedCrossRefGoogle Scholar
  47. Sugimoto Y., Morita R., Amano K., Fong C. Y., Shah P. U., Castroviejo I. P., et al. (2000) Childhood absence epilepsy in 8q24: refinement of candidate region and construction of physical map. Genomics 68, 264–272.PubMedCrossRefGoogle Scholar
  48. Szabadkai G., Varnai P., and Enyedi P. (1999) Selective inhibition of potassium-stimulated rat adrenal glomerulosa cells by ruthenium red. Biochem. Pharmacol. 57, 209–218.PubMedCrossRefGoogle Scholar
  49. Talley E. M. and Bayliss D. A. (2002) Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action. J. Biol. Chem. 277, 17733–17742.PubMedCrossRefGoogle Scholar
  50. Talley E. M., Lei Q., Sirois J. E., and Bayliss D. A. (2000) TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 25, 399–410.PubMedCrossRefGoogle Scholar
  51. Talley E. M., Solorzano G., Lei Q., Kim D., and Bayliss D. A. (2001) Cns distribution of members of the two-poredomain (KCNK) potassium channel family. J. Neurosci. 21, 7491–7505.PubMedGoogle Scholar
  52. Vergnes M., Marescaux C., Micheletti G., Reis J., Depaulis A., Rumbach L., and Warter J. M. (1982) Spontaneous paroxysmal electroclinical patterns in rat: a model of generalized non-convulsive epilepsy. Neurosci. Lett. 33, 97–101.PubMedCrossRefGoogle Scholar
  53. Washburn C. P., Sirois J. E., Talley E. M., Guyenet P. G., and Bayliss D. A. (2002) Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+ conductance. J. Neurosci. 22, 1256–1265.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Jethro Holter
    • 1
    Email author
  • David Carter
    • 1
  • Nathalie Leresche
    • 2
  • Vincenzo Crunelli
    • 1
  • Pierre Vincent
    • 2
  1. 1.School of BioscienceCardiff UniversityCardiffUK
  2. 2.Equipe Neurobiologie Cellulaire, UMR 7102CNRS Université Paris VIParisFrance

Personalised recommendations