Journal of Molecular Neuroscience

, Volume 24, Issue 3, pp 387–400 | Cite as

Oxidative stress, induced by 6-hydroxydopamine, reduces proteasome activities in PC12 cells

Implications for the pathogenesis of Parkinson’s disease
Original Article

Abstract

Mutations in familial Parkinson’s disease (PD) have been associated with the failure of protein degradation through the ubiquitin-proteasome system (UPS). Impairment of proteasome function has also been suggested to play a role in the pathogenesis of sporadic PD. We examined the proteasome activity in PC12 cells treated with 6-hydroxydopamine (6-OHDA), the dopamine synthetic derivate used in models of PD. We found that 6-OHDA treatment increased protein oxidation, as indicated by carbonyl group accumulation, and increased caspase-3 activity. In addition, there was an increase in trypsin-, chymotrypsin-, and postacidic-like proteasome activities in cells treated with 10–100 µM 6-OHDA, whereas higher doses caused a marked decline. 6-OHDA exposure also increased mRNA expression of the 19S regulatory subunit in a dose-dependent manner, whereas the expression of 20S- and 11S-subunit mRNAs did not change. Administration of the antioxidant N-acetylcysteine to 6-OHDA-treated cells prevented the alteration in proteasome functions. Moreover, reduction in cell viability owing to administration of proteasome inhibitor MG132 or lactacystin was partially prevented by the endogenous antioxidant-reduced glutathione. In conclusion, our data indicate that mild oxidative stress elevates proteasome activity in response to increase in protein damage. Severe oxidative insult might cause UPS failure, which leads to protein aggregation and cell death. Moreover, in the case of UPS inhibition or failure, the blockade of physiological reactive oxygen species production during normal aerobic metabolism is enough to ameliorate cell viability. Control of protein clearance by potent, brain-penetrating antioxidants might act to slow down the progression of PD.

Index entries

Parkinson’s disease 6-OHDA UPS caspase 3 carbonyl detection (Oxyblot™) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam Z. I., Daniel S. E., Lees A. J., Marsden D. C., Jenner P., and Halliwell B. (1997a) A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J. Neurochem. 69, 1326–1329.PubMedCrossRefGoogle Scholar
  2. Alam Z. I., Jenner A., Daniel S. E., Lees A. J., Cairns N., Marsden C. D., et al. (1997b) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem. 69, 1196–1203.PubMedCrossRefGoogle Scholar
  3. Alves-Rodrigues A., Gregori L., and Figueiredo-Pereira M. E. (1998) Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci. 21, 516–520.PubMedCrossRefGoogle Scholar
  4. Andrew R., Watson D. G., Best S. A., Midgley J. M., Wenlong H., and Petty R. K. (1993) The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochem. Res. 18, 1175–1177.PubMedCrossRefGoogle Scholar
  5. Barzilai A., Zilkha-Falb R., Daily D., Stern N., Offen D., Ziv I., et al. (2000) The molecular mechanism of dopamine-induced apoptosis: identification and characterization of genes that mediate dopamine toxicity. J. Neural Transm. Suppl. 60, 59–76.PubMedGoogle Scholar
  6. Beal M. F. (1992) Mechanisms of excitotoxicity in neurologic diseases. FASEB J. 6, 3338–3344.PubMedGoogle Scholar
  7. Bence N. F., Sampat R. M., and Kopito R. R. (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555.PubMedCrossRefGoogle Scholar
  8. Bennett M. C., Bishop J. F., Leng Y., Chock P. B., Chase T. N., and Mouradian M. M. (1999) Degradation of alpha-synuclein by proteasome. J. Biol. Chem. 274, 33,855–33,858.Google Scholar
  9. Borenfreund J. A. and Puerner A. (1984) A simple quantitative procedure using monolayer culture for cytotoxicity assay. J. Tissue Culture Methods 9, 7–9.CrossRefGoogle Scholar
  10. Bulteau A. L., Petropoulos I., and Friguet B. (2000) Age-related alterations of proteasome structure and function in aging epidermis. Exp. Gerontol. 35, 767–777.PubMedCrossRefGoogle Scholar
  11. Chomczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.PubMedCrossRefGoogle Scholar
  12. Conway K. A., Harper J. D., and Lansbury P. T. (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat. Med. 4, 1318–1320.PubMedCrossRefGoogle Scholar
  13. Coux O., Tanaka K., and Goldberg A. L. (1996) Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801–847.PubMedCrossRefGoogle Scholar
  14. Coyle J. T. and Puttfarcken P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689–695.PubMedCrossRefGoogle Scholar
  15. Davies K. J. (1987) Protein damage and degradation by oxygen radicals: I. General aspects. J. Biol. Chem. 262, 9895–9901.PubMedGoogle Scholar
  16. Davies K. J. A. (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie. 83, 301–310.PubMedCrossRefGoogle Scholar
  17. Dexter D. T., Holley A. E., Flitter W. D., Slater T. F., Wells F. R., Daniel S. E., et al. (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov. Disord. 9, 92–97.PubMedCrossRefGoogle Scholar
  18. Dexter D. T., Wells F. R., Agid F., Agid Y., Lees A. J., Jenner P., and Marsden C. D. (1987) Increased nigral iron content in postmortem parkinsonian brain. Lancet 2, 1219–1220.PubMedCrossRefGoogle Scholar
  19. Ding Q. and Keller J. N. (2001) Proteasomes and proteasome inhibition in the central nervous system. Free Radic. Biol. Med. 31, 574–584.PubMedCrossRefGoogle Scholar
  20. Elkon H., Melamed E., and Offen D. (2001) 6-Hydroxy-dopamine increases ubiquitin-conjugates and protein degradation: implications for the pathogenesis of Parkinson’s disease. Cell. Mol. Neurobiol. 21, 771–781.PubMedCrossRefGoogle Scholar
  21. Figueiredo-Pereira M. E. and Cohen G. (1999) The ubiquitin/proteasome pathway: friend or foe in zinc-, cadmium-, and H2O2-induced neuronal oxidative stress. Mol. Biol. Rep. 26, 65–69.PubMedCrossRefGoogle Scholar
  22. Floor E. and Wetzel M. G. (1998) Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J. Neurochem. 70, 268–275.PubMedCrossRefGoogle Scholar
  23. Forno L. S. (1996) Neuropathology of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 55, 259–272.PubMedGoogle Scholar
  24. Friguet B. and Szweda L. I. (1997) Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett. 405, 21–25.PubMedCrossRefGoogle Scholar
  25. Giasson B. I., Duda J. E., Murray I. V., Chen Q., Souza J. M., Hurtig H. I., et al. (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290, 985–989.PubMedCrossRefGoogle Scholar
  26. Gibb W. R. and Lees A. J. (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 51, 745–752.PubMedGoogle Scholar
  27. Gilgun-Sherki Y., Rosenbaum Z., Melamed E., and Offen D. (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacol. Rev. 54, 271–284.PubMedCrossRefGoogle Scholar
  28. Glickman M. H. and Ciechanover A. (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428.PubMedGoogle Scholar
  29. Glockzin, S. von Knethen A., Scheffner M., and Brune B. (1999) Activation of the cell death program by nitric oxide involves inhibition of the proteasome. J. Biol. Chem. 274, 19,581–19,586.CrossRefGoogle Scholar
  30. Goedert M. (2001) Alpha-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci. 2, 492–501.PubMedCrossRefGoogle Scholar
  31. Graham D. G. (1978) Oxidative pathways for catecholamine in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol. 14, 633–643.PubMedGoogle Scholar
  32. Grune, T., Blasig I. E., Sitte N., Roloff B., Haseloff R., and Davies K. J. (1998) Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J. Biol. Chem. 273, 10,857–10,862.CrossRefGoogle Scholar
  33. Halliwell B. and Jenner P. (1998) Impaired clearance of oxidised proteins in neurodegenerative diseases. Lancet 351, 1510.PubMedCrossRefGoogle Scholar
  34. Hasegawa E., Takeshige K., Oishi T., Murai Y., and Minakami S. (1990) 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem. Biophys. Res. Commun. 170, 1049–1055.PubMedCrossRefGoogle Scholar
  35. Hayashi T. and Goto S. (1998) Age-related changes in the 20S and 26S proteasome activities in the liver of male F344 rats. Mech. Ageing Dev. 102, 55–66.PubMedCrossRefGoogle Scholar
  36. Jellinger K., Linert L., Kienzl E., Herlinger E., and Youdim M. B. (1995) Chemical evidence for 6-hydroxydopamine to be an endogenous toxic factor in the pathogenesis of Parkinson’s disease. J. Neural Transm. Suppl. 46, 297–314.PubMedGoogle Scholar
  37. Jenner P. and Olanow C. W. (1998) Understanding cell death in Parkinson’s disease. Ann. Neurol. 44, S72-S84.PubMedGoogle Scholar
  38. Keller J. N., Hanni K. B., and Markesbery W. R. (2000a) Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech. Ageing Dev. 113, 61–70.PubMedCrossRefGoogle Scholar
  39. Keller J. N., Huang F. F., Dimayuga E. R., and Maragos W. F. (2000b) Dopamine induces proteasome inhibition in neural PC12 cell line. Free Radic. Biol. Med. 29, 1037–1042.PubMedCrossRefGoogle Scholar
  40. Keller J. N., Huang F. F., and Markesbery W. R. (2000c) Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience 98, 149–156.PubMedCrossRefGoogle Scholar
  41. Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Minoshima S., et al. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608.PubMedCrossRefGoogle Scholar
  42. Kruger R., Kuhn W., Muller T., Woitalla D., Graeber M., Kosel S., et al. (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat. Genet. 18, 106–108.PubMedCrossRefGoogle Scholar
  43. Leroy E., Boyer R., Auburger G., Leube B., Ulm G., Mezey E., et al. (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395, 451, 452.PubMedCrossRefGoogle Scholar
  44. Lewy F. H. (1912) Paralysis agitans. In: Pathologische Anatomie, Lewandowsky, M., ed., Springer, Berlin, pp. 920–933.Google Scholar
  45. Lowe J., McDermott H., Landon M., Mayer R. J., and Wilkinson K. D. (1990) Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. J. Pathol. 161, 153–160.PubMedCrossRefGoogle Scholar
  46. McNaught K. S. and Jenner P. (2001) Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci. Lett. 297, 191–194.PubMedCrossRefGoogle Scholar
  47. McNaught K. S., Belizaire R., Isacson O., Jenner P., and Olanow C. W. (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp. Neurol. 179, 38–46.PubMedCrossRefGoogle Scholar
  48. McNaught K. S., Belizaire R., Jenner P., Olanow C. W., and Isacson O. (2002) Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinson’s disease. Neurosci. Lett. 326, 155–158.PubMedCrossRefGoogle Scholar
  49. McNaught K. S., Olanow C. W., Halliwell B., Isacson O., and Jenner P. (2001) Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat. Rev. Neurosci. 2, 589–594.PubMedCrossRefGoogle Scholar
  50. Mizuno Y., Ikebe S., Hattori N., Nakagawa-Hattori Y., Mochizuki H., Tanaka M., and Ozawa T. (1995) Role of mitochondria in the etiology and pathogenesis of Parkinson’s disease. Biochim. Biophys. Acta 1271, 265–274.PubMedGoogle Scholar
  51. Mizuno Y., Ohta S., Tanaka M., Takamiya S., Suzuki K., Sato T., et al. (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem. Biophys. Res. Commun. 163, 1450–1455.PubMedCrossRefGoogle Scholar
  52. Narhi L., Wood S. J., Steavenson S., Jiang Y., Wu G. M., Anafi D., et al. (1999) Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J. Biol. Chem. 274, 9843–9846.PubMedCrossRefGoogle Scholar
  53. Offen D., Gorodin S., Melamed E., Hanania J., and Malik Z. (1999) Dopamine-melanin is actively phagocytized by PC12 cells and cerebellar granular cells: possible implications for the etiology of Parkinson’s disease. Neurosci. Lett. 260, 101–104.PubMedCrossRefGoogle Scholar
  54. Offen D., Ziv I., Barzilai A., Gorodin S., Glater E., Hochman A., and Melamed E. (1997) Dopamine-melanin induces apoptosis in PC12 cells; possible implications for the etiology of Parkinson’s disease. Neurochem. Int. 31, 207–216.PubMedCrossRefGoogle Scholar
  55. Offen D., Ziv I., Sternin H., Melamed E., and Hochman A. (1996) Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson’s disease. Exp. Neurol. 141, 32–39.PubMedCrossRefGoogle Scholar
  56. Parkinson J. (1817) An Essay on the Shaking Palsy, Sherwood, Neely and Jones, London.Google Scholar
  57. Perry T. L., Godin D. V., and Hansen S. (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci. Lett. 33, 305–310.PubMedCrossRefGoogle Scholar
  58. Polymeropoulos M. H., Lavedan C., Leroy E., Ide S. E., Dehejia A., Dutra A., et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047.PubMedCrossRefGoogle Scholar
  59. Reinheckel T., Sitte N., Ullrich O., Kuckelkorn U., Davies K. J., and Grune T. (1998) Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem. J. 335, 637–642.PubMedGoogle Scholar
  60. Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning, a Laboratory Mannual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  61. Schapira A. H., Cooper J. M., Dexter D., Clark J. B., Jenner P., and Marsden C. D. (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J. Neurochem. 54, 823–827.PubMedCrossRefGoogle Scholar
  62. Shimura H., Hattori N., Kubo S., Mizuno Y., Asakawa S., Minoshima S., et al. (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25, 302–305.PubMedCrossRefGoogle Scholar
  63. Shimura H., Schlossmacher M. G., Hattori N., Frosch M. P., Trockenbacher A., Schneider R., et al. (2001) Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293, 263–269.PubMedCrossRefGoogle Scholar
  64. Shringarpure R., Grune T., Sitte N., and Davies K. J. (2000) 4-Hydroxynonenal-modified amyloid-beta peptide inhibits the proteasome: possible importance in Alzheimer’s disease. Cell. Mol. Life Sci. 57, 1802–1809.PubMedCrossRefGoogle Scholar
  65. Sian J., Dexter D. T., Lees A. J., Daniel S., Jenner P., and Marsden C. D. (1994) Glutathione-related enzymes in brain in Parkinson’s disease. Ann. Neurol. 36, 356–361.PubMedCrossRefGoogle Scholar
  66. Simantov R., Blinder E., Ratovitski T., Tauber M., Gabbay M., and Porat S. (1996) Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acids antisense to the dopamine transporter. Neuroscience 74, 39–50.PubMedCrossRefGoogle Scholar
  67. Sofic E., Lange K. W., Jellinger K., and Riederer P. (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci. Lett. 142, 128–130.PubMedCrossRefGoogle Scholar
  68. Spillantini M. G., Crowther R. A., Jakes R., Hasegawa M., and Goedert M. (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. U.S.A. 95, 6469–6473.PubMedCrossRefGoogle Scholar
  69. Stefanis L., Larsen K. E., Rideout H. J., Sulzer D., and Greene L. A. (2001) Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J. Neurosci. 21, 9549–9560.PubMedGoogle Scholar
  70. Strack P. R., Waxman L., and Fagan J. M. (1996) Activation of the multicatalytic endopeptidase by oxidants. Effects on enzyme structure. Biochemistry 35, 7142–7149.PubMedCrossRefGoogle Scholar
  71. Swerdlow R. H., Parks J. K., Miller S. W., Tuttle J. B., Trimmer P. A., Sheehan J. P., et al. (1996) Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann. Neurol. 40, 663–671.PubMedCrossRefGoogle Scholar
  72. Yoritaka A., Hattori N., Uchida K., Tanaka M., Stadtman E. R., and Mizuno Y. (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc. Natl. Acad. Sci. U.S.A. 93, 2696–2701.PubMedCrossRefGoogle Scholar
  73. Youdim M. B., Ben-Shachar D., and Riederer P. (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol. Scand. Suppl. 126, 47–54.PubMedCrossRefGoogle Scholar
  74. Ziv I., Melamed E., Nardi N., Luria D., Achiron A., Offen D., and Barzilai A. (1994) Dopamine induces apoptosis-like cell death in cultured chick sympathetic neurons, a possible novel pathogenetic mechanism in Parkinson’s disease. Neurosci. Lett. 170, 136–140.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  1. 1.Felsenstein Medical Research Center and the Department of Neurology, Rabin Medical CenterTel-Aviv University-Sackler School of MedicinePetah-TikvaIsrael

Personalised recommendations