Journal of Molecular Neuroscience

, Volume 24, Issue 2, pp 189–199 | Cite as

A neuroprotective peptide antagonizes fetal alcohol exposure-compromised brain growth

  • Feng C. Zhou
  • Youssef Sari
  • Teresa A. Powrozek
  • Catherine Y. Spong
Original Article

Abstract

We evaluated a 9-amino-acid peptide, SALLRSIPA (SAL), an agonist of activity-dependent neurotrophic factor (ADNF), for its protective properties against fetal alcohol-related brain growth retardation, using an established liquid diet model of alcohol-related neurodevelopmental disorder (ARND) in C57BL/6 mice. Alcohol exposure during neurulation reduced body weight, head size, and specifically brain weight and volume. Major gross brain deficits include underdevelopment of brain areas, cortical thinning, ventricle enlargement, and restricted midline neural tissue growth leading to openings at the roof/floor plate. SALLRSIPA (SAL) treatment increased fetal body weight and restored brain weight, brain volume, and regional brain size. Furthermore, SAL restored cortical thickness, reduced the size and frequency of neural tube openings, and attenuated ventricular enlargement. The ability of SAL to antagonize alcohol-retarded brain growth and development of forebrain and midline neural tube at midgestation suggests its potential use as an antagonist against fetal alcohol-rendered microencephaly early in development.

Index Entries

Fetal alcohol syndrome fetal alcohol effect microencephaly brain development neurotrophic factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aase J. M., Jones K. L., and Clarren S. K. (1995) Do we need the term “FAE”? Pediatrics 95, 428–430.PubMedGoogle Scholar
  2. Abel E. L. (1984) Fetal Alcohol Syndrome and Fetal Alcohol Effect, Plenum Publishing, New York.Google Scholar
  3. Becker H. C., Diaz-Granados J. L., and Randall C. L. (1996) Teratogenic actions of ethanol in the mouse: a minireview. Pharmacol. Biochem. Behav. 55, 501–513.PubMedCrossRefGoogle Scholar
  4. Brenneman D. E. and Gozes I. (1996) A femtomolaracting neuroprotective peptide. J. Clin. Invest. 97, 2299–2307.PubMedCrossRefGoogle Scholar
  5. Brenneman D. E., Hauser J., Neale E., Rubinraut S., Fridkin M., Davidson A., and Gozes I. (1998) Activity-dependent neurotrophic factor: structure-activity relationships of femtomolar-acting peptides. J. Pharmacol. Exp. Ther. 285, 619–627.PubMedGoogle Scholar
  6. Brenneman D. E., Phillips T. M., Festoff B. W., and Gozes I. (1997) Identity of neurotrophic molecules released from astroglia by vasoactive intestinal peptide. Ann. N. Y. Acad. Sci. 814, 167–173.PubMedCrossRefGoogle Scholar
  7. Ericson J., Muhr J., Jessell T. M., and Edlund T. (1995) Sonic hedgehog: a common signal for ventral patterning along the rostrocaudal axis of the neural tube. Int. J. Dev. Biol. 39, 809–816.PubMedGoogle Scholar
  8. Glazner G. W., Boland A., Dresse A. E., Brenneman D. E., Gozes I., and Mattson M. P. (1999) Activity-dependent neurotrophic factor peptide (ADNF9) protects neurons against oxidative stress-induced death. J. Neurochem. 73, 2341–2347.PubMedCrossRefGoogle Scholar
  9. Glazner G. W., Camandola S., and Mattson M. P. (2000) Nuclear factor-kappaB mediates the cell survival-promoting action of activity-dependent neurotrophic factor peptide-9. J. Neurochem. 75, 101–108.PubMedCrossRefGoogle Scholar
  10. Goodlett C. R. and Horn K. H. (2001) Mechanisms of alcohol-induced damage to the developing nervous system. Alcohol Res. Health 25, 175–184.PubMedGoogle Scholar
  11. Gozes I. and Brenneman D. E. (1996) Activity-dependent neurotrophic factor (ADNF). An extracellular neuroprotective chaperonin? J. Mol. Neurosci. 7, 235–244.PubMedGoogle Scholar
  12. Gozes I., Davidson A., Gozes Y., Mascolo R., Barth R., Warren D., et al. (1997) Antiserum to activity-dependent neurotrophic factor produces neuronal cell death in CNS cultures: immunological and biological specificity. Brain Res. Dev. Brain Res. 99, 167–175.PubMedCrossRefGoogle Scholar
  13. Gozes I., Giladi E., Pinhasov A., Bardea A., and Brenneman D. E. (2000) Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze. J. Pharmacol. Exp. Ther. 293, 1091–1098.PubMedGoogle Scholar
  14. Gressens P., Marret S., Bodenant C., Schwendimann L., and Evrard P. (1999) Activity-dependent neurotrophic factor-14 requires protein kinase C and mitogen-associated protein kinase kinase activation to protect the developing mouse brain against excitotoxicity. J. Mol. Neurosci. 13, 199–210.PubMedCrossRefGoogle Scholar
  15. Gressens P., Marret S., Hill J. M., Brenneman D. E., Gozes I., Fridkin M., and Evrard P. (1997) Vasoactive intestinal peptide prevents excitotoxic cell death in the murine developing brain. J. Clin. Invest. 100, 390–397.PubMedGoogle Scholar
  16. Middaugh L. D., Randall C. L. and Favara J. P. (1988) Prenatal ethanol exposure in C57 mice: effects on pregnancy and offspring development. Neurotoxicol. Teratol. 10, 175–180.PubMedCrossRefGoogle Scholar
  17. Middaugh L. D. and Baggan W. O. (1995) Prenatal maternal ethanol effects on pregnant mice and on off-spring viability and growth: influences of exposure time and weaning diet. Alcohol. Clin. Exp. Res. 19(5), 1351–1358.PubMedCrossRefGoogle Scholar
  18. Olney J. W., Tenkova T., Dikranian K., Muglia L. J., Jermakowicz W. J., D’Sa C. and Roth K. A. (2002) Ethanol-induced caspase-3 activation in the in vivo developing mouse brain. Neurobiol. Dis. 9, 205–219.PubMedCrossRefGoogle Scholar
  19. Pinhasov A., Mandel S., Torchinsky A., Giladi E., Pittel Z., Goldsweig A. M., et al. (2003) Activity-dependent neuroprotective protein: a novel gene essential for brain formation. Brain Res. Dev. Brain Res. 144, 83–90.PubMedCrossRefGoogle Scholar
  20. Rubenstein J. L. (1998) Development of serotonergic neurons and their projections. Biol. Psychiatry 44, 145–150.PubMedCrossRefGoogle Scholar
  21. Spong C. Y., Abebe D. T., Gozes I., Brenneman D. E., and Hill J. M. (2001) Prevention of fetal demise and growth restriction in a mouse model of fetal alcohol syndrome. J. Pharmacol. Exp. Ther. 297, 774–779.PubMedGoogle Scholar
  22. Stratton K., Howe C., and Battaglia F. (1996) Fetal Alcohol Syndrome: Diagnosis, Epidemiology, Prevention, and Treatment, National Academy Press, Washington, D.C.Google Scholar
  23. Sulik K. K., Cook C. S., and Webster W. S. (1988) Teratogens and craniofacial malformations: relationships to cell death. Development 103(Suppl.), 213–231.PubMedGoogle Scholar
  24. Webster W. S. and Ritchie H. E. (1991) Teratogenic effects of alcohol and isotretinoin on craniofacial development: an analysis of animal models. J. Craniofac. Genet. Dev. Biol. 11, 296–302.PubMedGoogle Scholar
  25. Webster W. S., Walsh D. A., McEwen S. E., and Lipson A. H. (1983) Some teratogenic properties of ethanol and acetaldehyde in C57BL/6J mice: implications for the study of the fetal alcohol syndrome. Teratology 27, 231–243.PubMedCrossRefGoogle Scholar
  26. Wilkemeyer M., L., Chen S. Y., Menkari C. E., Brenneman D. E., Sulik K. K., and Charness M. E. (2003) Differential effects of ethanol antagonism an neuroprotection in napvsipq prevention of ethanol-induced developmental toxicity. Proc. Natl. Acad. Sci. USA, 100, 8543–8548.PubMedCrossRefGoogle Scholar
  27. Wilkemeyer M. F., Menkari C. E., Spong C. Y., and Charness M. E. (2002) Peptide antagonists of ethanol inhibition of 11-mediated cell-cell adhesion. J. Pharmacol. Exp. Ther. 303, 110–116.PubMedCrossRefGoogle Scholar
  28. Ye W., Shimamura K., Rubenstein J. L., Hynes M. A., and Rosenthal A. (1998) FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766.PubMedCrossRefGoogle Scholar
  29. Zamostiano R., Pinhasov A., Bassan M., Perl O., Steingart R. A., Atlas R., et al. (1999) A femtomolaracting neuroprotective peptide induces increased levels of heat shock protein 60 in rat cortical neurons: a potential neuroprotective mechanism. Neurosci. Lett. 264, 9–12.PubMedCrossRefGoogle Scholar
  30. Zhou F. C., Sari Y., Powrozek T., Goodlett C. R., and Li T.-K. (2003) Moderate alcohol exposure compromises neural tube midline development in prenatal brain. Dev. Brain Res. 144, 43–55.CrossRefGoogle Scholar
  31. Zhou F. C., Sari Y., and Zhang J. K. (2000) Expression of serotonin transporter protein in developing rat brain. Brain Res. Dev. Brain Res. 119, 33–45.PubMedCrossRefGoogle Scholar
  32. Zhou F. C., Sari Y., Li T. K., Goodlett G., Azmitia E. C. (2002) Deviations in brain early serotonergic development as a result of fetal alcohol exposure. Neurotox. Res. 4, 337–342.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Feng C. Zhou
    • 1
    • 2
  • Youssef Sari
    • 1
  • Teresa A. Powrozek
    • 3
  • Catherine Y. Spong
    • 4
  1. 1.Department of Anatomy and Cell BiologyIndiana University School of MedicineUSA
  2. 2.Program in Medical Neurobiology, and IUPUIIndiana University School of MedicineUSA
  3. 3.Department of PsychologyIndiana University School of MedicineIndianapolis
  4. 4.Section on Developmental and Molecular Pharmacology, Laboratory of Developmental NeurobiologyNational Institute of Child HealthBethesda

Personalised recommendations