Journal of Molecular Neuroscience

, Volume 24, Issue 1, pp 9–14

Neurocognitive aging and cardiovascular fitness

Recent findings and future directions
  • Stan J. Colcombe
  • Arthur F. Kramer
  • Edward McAuley
  • Kirk I. Erickson
  • Paige Scalf
Prevention

Abstract

In the first century, ce, the Roman satirist Juneval famously observed Orandum est, ut sit mens sana in corpore sano, or “A sound mind in a sound body is something to be prayed for.” This implicit link between mental and physical health, also paralleled by Eastern philosophies and practices such as tai chi, has survived the millennia since Juneval and his contemporaries. More recently, controlled examinations of the effects of physical fitness on cognitive performance have shown that improving cardiovascular fitness (CVF) can help to reduce the deleterious effects of age on cognition and brain structure. Thus, as we age, it may well be the case that a sound mind is a natural concomitant of a sound body. Numerous cross-sectional and longitudinal studies have examined the effects of aerobic exercise on cognitive performance in aging humans since earlier studies, which found that physically fit older adults performed better on simple cognitive tasks than their less-fit counterparts. This base of knowledge recently has been furthered through examinations of cortical structure (Colcombe et al., 2003) and neurocognitive function in aging humans via functional and structural magnetic resonance imaging techniques. In this manuscript, we will briefly review some of our recent research on the effects of CVF on brain function, structure, and behavior in older adults. We will then outline some of our current and future directions in this area.

Index Entries

Aging fitness cognitive brain plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barcelo F., Suwanzono S., and Knight R. T. (2000) Prefrontal modulation of visual processing in humans. Nat. Neurosci. 3(4), 399–403.PubMedCrossRefGoogle Scholar
  2. Baron A. and Mattila W. R. (1989) Response slowing of older adults: effects of time-contingencies on single and dual-task performances. Psychol. Aging 4, 66–72.PubMedCrossRefGoogle Scholar
  3. Berchtold N. C., Kesslak J. P., Pike C. J., Aldard P. A., and Cotman C. W. (2001) Estrogen and exercise interact to regulate brain derived neurotrophin factor mRNA transcription and protein expression in the rat hippocampus. Eur. J. Neurosci. 14(12), 1992–2002.PubMedCrossRefGoogle Scholar
  4. Botvinick M., Nystrom L. E., Fissel K., Carter C., and Cohen J. D. (1999) Conflict monitoring versus selection-foraction in anterior cingulate cortex. Nature, 402, 179–181.PubMedCrossRefGoogle Scholar
  5. Blomstrand E., Perrett D., Parry-Billings M., and Newsholme E. A. (1989) Effect of sustained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions in the rat. Acta Physiol. Scand. 136(3), 473–481.PubMedCrossRefGoogle Scholar
  6. Cabeza, R. (2002) Hemispheric asymmetry reduction in old adults: The HAROLD model. Psychol. and Aging, 17, 85–100.CrossRefGoogle Scholar
  7. Cameron H. A. and McKay R. D. (1999) Restoring production of hippocampal neurons in old age. Nat. Neurosci. 2(10), 894–897.PubMedCrossRefGoogle Scholar
  8. Carro E., Trejo L. J., Busiguina S., and Torres Aleman I. (2001) Circulating insulin-like growth factor 1 mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J. Neurosci. 21, 5678–5684.PubMedGoogle Scholar
  9. Colcombe S. J. and Kramer A. F. (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14(2), 125–130.PubMedCrossRefGoogle Scholar
  10. Colcombe S. J., Erickson K., I., Raz N., Webb A. G., Cohen N. J., McAuley E., and Kramer A. F. (2003) Aerobic fitness reduces brain tissue loss in aging humans. J. Gerontol. A. Biol. Sci. Med. Sci. 53(2), 176–180.Google Scholar
  11. Colcombe S. J., Kramer A. F., Erickson K. I., Scalf P., McAuley E., Cohen N. J., et al. (2004) Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl. Acad. Sci. USA 101, 3316–3321.PubMedCrossRefGoogle Scholar
  12. Cotman C. W. and Berchtold N. C. (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295–301.PubMedCrossRefGoogle Scholar
  13. Etnier J. R., Salazar W., Landers D. M., Petruzzello S. J., Han M. and Nowell P. (1997) The influence of physical fitness and exercise upon cognitive functioning: a meta-analysis. J. Sport Exercise Psychol. 19, 249–277.Google Scholar
  14. Godfrey R. J., Madgwick Z., and Whyte G. P. (2003) The exercise-induced growth hormone response in athletes. Sports Med. 33(8), 599–613.PubMedCrossRefGoogle Scholar
  15. Kramer A. F., Hahn S., Cohen N. J., Banich M. T., McAuley E., Harrison C. R., et al. (1999a) Ageing, fitness and neurocognitive function. Nature 400, 418–419.PubMedCrossRefGoogle Scholar
  16. Kramer A. F., Hahn S., and Gopher D. (1999b) Task coordination and aging: explorations of executive control processes in the task-switching paradigm. Acta Psychol. 101, 339–378.CrossRefGoogle Scholar
  17. Kramer A. F., Larish J., Weber T., and Bardell L. (1999c) Training for executive control: task coordination strategies and aging. In Gopher D. and Koriat A., eds., Atten. Perform. XVII. MIT Press, Cambridge, MA.Google Scholar
  18. Kramer A., Humphrey D., Larish J., Logan G., and Strayer D. (1994) Aging and inhibition: beyond a unitary view of inhibitory processing in attention. Psychol. Aging 9, 491–512.PubMedCrossRefGoogle Scholar
  19. Kramer A. F., Larish J., and Strayer D. L. (1995) Training for attentional control in dual-task settings: a comparison of young and old adults. J. Appl. Exper. Psychol. 1, 50–76.CrossRefGoogle Scholar
  20. Masunaga H. and Horn J. (2002) Expertise and age-related changes in components of intelligence. Psychol. Aging 16, 293–311.CrossRefGoogle Scholar
  21. Neeper S. A., Gomez-Pinilla F., Choi J., and Cotman C. (1995) Exercise and brain neurotrophins. Nature 373, 109.PubMedCrossRefGoogle Scholar
  22. O’Sullivan M., Jones D. K., Summers P. E., Morris R. G., Williams S. C. R., and Markus H. S. (2001) Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 57, 632–638.PubMedGoogle Scholar
  23. Salthouse T. A. (1984) Effects of age and skill in typing. J. Exp. Psychol. Gen. 113, 345–371.PubMedCrossRefGoogle Scholar
  24. Scialfa C. T., Jenkins L., Hamaluk E., and Skaloud P. (2000) Aging and the development of automaticity in conjunction search. J. Gerontol. B. Psychol. Sci. Soc. Sci. 55, 7–46.Google Scholar
  25. West R. L. (1996) An application of prefrontal cortex function theory to cognitive aging. Psychol. Bull. 120, 272–292.PubMedCrossRefGoogle Scholar
  26. Yasuno F., Suhara T., Nakayama T., Ichimiya T., Okubo Y., Takano A., et al. (2003) Inhibitory effect of hippocampal 5-HT1A receptors on human explicit memory. Am. J. Psychiatry 160(2), 334–340.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Stan J. Colcombe
    • 1
  • Arthur F. Kramer
    • 1
  • Edward McAuley
    • 1
  • Kirk I. Erickson
    • 1
  • Paige Scalf
    • 1
  1. 1.Beckman InstituteUniversity of Illinois at Urbana-ChampaignUrbana

Personalised recommendations