Journal of Molecular Neuroscience

, Volume 23, Issue 3, pp 255–262 | Cite as

Apolipoprotein E dose-dependent modulation of β-amyloid deposition in a transgenic mouse model of Alzheimer’s disease

  • Ronald B. DeMattosEmail author
Original Article


Susceptibility to the development of Alzheimer’s disease (AD) is increased for individuals harboring one or more apolipoprotein E4 (apoE4) alleles. Even though several isoform-specific effects of apoE have been identified, the relationship between biochemical function and risk factor assessment remains unknown. Our previous studies have demonstrated that there is an equilibrium between cerebral spinal fluid (CSF) and plasma β-amyloid (Aβ) and that amyloid plaques can modify this equilibrium. Trafficking of soluble central nervous system (CNS) Aβ is a very dynamic system that almost certainly is modulated by Aβ-binding proteins. Altered trafficking of the Aβ peptide might have a dramatic consequence as to whether the peptide is metabolized or begins to deposit within the brain. To gain a better understanding of the molecular mechanisms by which apoE influences AD pathogenesis and/or Aβ trafficking, we developed PDAPP transgenic mice that express different levels of human apoE3. Analysis of the soluble CNS pools of Aβ in young mice showed an apoE3 dose-dependent decrease in Aβ levels (E3−/−>E3−/−>E3+/+). In addition to the dose-dependent effects on soluble Aβ, by 15 mo of age there were highly significant differences in the amount of deposited Aβ between the genotypes (E3−/−>E3−/−>E3+/+). These data indicate that apoE3 provides a dose-dependent protective effect against Aβ deposition. This study suggests that increasing human apoE levels in brain might be a possible therapeutic target for preventing AD.

Index Entries

Apolipoprotein E Alzheimer’s disease amyloid transgenic cerebralspinal fluid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bales K. R., Du Y., Holtzman D. M., Cordell B., and Paul S. M. (2000) Neuroinflammation and Alzheimer’s disease: critical roles for cytokine/Aβ-induced glial activation, NF-κB, and apolipoprotein E. Neurobiol. Aging 21, 427–432.PubMedCrossRefGoogle Scholar
  2. Bales K. R., Verina T., Dodel R. C., Du Y., Altstiel L., Bender M., et al. (1997) Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat. Genet. 17, 263–264.PubMedCrossRefGoogle Scholar
  3. Buttini M., Orth M., Bellosta S., Akeefe H., Pitas R. E., Wyss-Coray T., et al. (1999) Expression of human apolipoprotein E3 or E4 in the brains of apoE/mice: isoform-specific effects on neurodegeneration. J. Neurosci. 19, 4867–4880.PubMedGoogle Scholar
  4. Chen Y., Lomnitski L., Michaelson D. M., and Shohami E. (1997) Motor and cognitive deficits in apolipoprotein E-deficient mice after closed head injury. Neuroscience 80, 1255–1262.PubMedCrossRefGoogle Scholar
  5. Corder E. H., Saunders A. M., Strittmatter W. J., Schmechel D. E., Gaskell P. C., Small G. W., et al. (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923.PubMedCrossRefGoogle Scholar
  6. Dawson P. A., Schechter N., and Williams D. L. (1986) Induction of ratE and chicken A-1 apolipoproteins and mRNAs during optic nerve degeneration. J. Biol. Chem. 261, 5681–5684.PubMedGoogle Scholar
  7. DeMattos R. B., Bales K. R., Cummins D. J., Dodart J.-C., Paul S. M., and Holtzman D. M. (2001a) Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 98, 8850–8855.PubMedCrossRefGoogle Scholar
  8. DeMattos R. B., Bales K. R., Parsadanian M., Kierson M. E., O’Dell M. A., Foss E. M., et al. (2002a) Plaque-associated disruption of CSF and plasma Aβ equilibrium in a mouse model of Alzheimer’s Disease. J. Neurochem. 81, 229–236.PubMedCrossRefGoogle Scholar
  9. DeMattos R. B., Brendza R. P., Heuser J. E., Kierson M., Cirrito J. R., Fryer J. D., et al. (2001b) Purification and characterization of astrocyte-secreted apolipoprotein E and J-containing lipoproteins from wild-type and human apoE transgenic mice. Neurochem. Int. 39, 415–425.PubMedCrossRefGoogle Scholar
  10. DeMattos R. B., Curtiss L. K., and Williams D. L. (1998) A minimally lipidated form of cell-derived apolipoprotein E exhibits isoform-specific stimulation of neurite outgrowth in the absence of exogenous lipids or lipoproteins. J. Biol. Chem. 273, 4206–4212.PubMedCrossRefGoogle Scholar
  11. DeMattos R. B., Parsadanian M., O’Dell M. A., Taylor J. W., Bales K. R., Paul S. M., and Holtzman D. M. (2002b) Apolipoprotein E3 dose dependent modulation of Amyloid-beta deposition in a transgenic mouse model of Alzheimer’s disease. Soc. Neurosci. Abstr. 32, 723.Google Scholar
  12. DeMattos R. B., Rudel L. L., and Williams D. L. (2001c) Biochemical analysis of cell-derived apoE3 particles active in stimulating neurite outgrowth. J. Lipid Res. 42, 976–987.PubMedGoogle Scholar
  13. DeMattos R. B., Thorngate F. E., and Williams D. L. (1999) A test of the cytosolic apolipoprotein E hypothesis fails to detect the escape of apolipoprotein E from the endocytic pathway into the cytosol and shows that direct expression of apolipoprotein E in the cytosol is cytotoxic. J. Neurosci. 19, 2464–2473.PubMedGoogle Scholar
  14. Evans K. C., Berger E. P., Cho C.-G., Weisgraber K. H., and Lansbury P. T. (1994) Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 92, 763–767.CrossRefGoogle Scholar
  15. Fagan A. M., Watson M., Parsadanian M., Bales K. R., Paul S. M., and Holtzman D. M. (2002) Human and murine apoE markedly influence Aβ metabolism both prior and subsequent to plaque formation in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 9, 305–318.PubMedCrossRefGoogle Scholar
  16. Games D., Adams D., Alessandrini R., Barbour R., Berthelette P., Blackwell C., et al. (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527.PubMedCrossRefGoogle Scholar
  17. Ghersi-Egea J.-F., Gorevic P. D., Ghiso J., Frangione B., Patlak C. S., and Fensternacher J. D. (1996) Fate of cerebrospinal fluid-borne amyloid β-peptide: Rapid clearance into blood and appreciable accumulation by cerebral arteries. J. Neurochem. 67, 880–883.PubMedCrossRefGoogle Scholar
  18. Greenberg S. M., Briggs M. E., Hyman B. T., Kokoris G. J., Takis C., Kanter D. S., et al. (1996) Apolipoprotein E ε4 is associated with the presence and earlier onset of hemorrhage in cerebral amyloid angiopathy. Stroke 27, 1333–1337.PubMedGoogle Scholar
  19. Greenberg S. M., Rebeck G. W., Vonsattel J. P. G., Gomez-Isla T., and Hyman B. T. (1995) Apolipoprotein E ε4 and cerebral hemorrhage associated with amyloid angiopathy. Ann. Neurol. 38, 254–259.PubMedCrossRefGoogle Scholar
  20. Holtzman D. M. and Fagan A. M. (1998) Potential role of apoE in structural plasticity in the nervous system: implications for diseases of the central nervous system. Trends Cardiovasc. Med. 8, 250–255.PubMedCrossRefGoogle Scholar
  21. Holtzman D. M., Bales K. R., Tenkova T., Fagan A. M., Parsadanian M., Sartorius L. J., et al. (2000a) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 97, 2892–2897.PubMedCrossRefGoogle Scholar
  22. Holtzman D. M., Bales K. R., Wu S., Bhat P., Parsadanian M., Fagan A. M., et al. (1999) In vivo expression of apolipoprotein E reduces amyloid-β deposition in a mouse model of Alzheimers disease. J. Clin. Invest. 103, R15-R21.PubMedGoogle Scholar
  23. Holtzman D. M., Fagan A. M., Mackey B., Tenkova T., Sartorius L., Paul S. M., et al. (2000b) ApoE facilitates neuritic and cerebrovascular plaque formation in the APPsw mouse model of Alzheimer’s disease. Ann. Neurol. 47, 739–747.PubMedCrossRefGoogle Scholar
  24. Ignatius M. J., Gebicke-Harter P. J., Skene J. H. P., Schilling J. W., Weisgraber K. H., Mahley R. W., and Shooter E. M. (1986) Expression of apolipoprotein E during nerve degeneration and regeneration. Proc. Natl. Acad. Sci. USA 83, 1125–1129.PubMedCrossRefGoogle Scholar
  25. Ji Y., Permanne B., Sigurdsson E. M., Holtzman D. M., and Wisniewski T. (2001) Amyloid β40/42 clearance across the blood-brain barrier following intraventricular injections in wild-type, apoE knock-out and human apoE3 or E4 expressing transgenic mice. J. Alzheimers Dis. 3, 23–30.PubMedGoogle Scholar
  26. Johnson-Wood K., Lee M., Motter R., Hu K., Gordon G., Barbour R., et al. (1997) Amyloid precursor protein processing and Aβ42 deposition in a transgenic mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 94, 1550–1555.PubMedCrossRefGoogle Scholar
  27. Jordán J., Galindo M. F., Miller R. J., Reardon C. A., Getz G. S., and LaDu M. J. (1998) Isoform-specific effect of apolipoprotein E on cell survival- and amyloid-induced toxicity in rat hippocampal pyramidal neuronal cultures. J. Neurosci. 18, 195–204.PubMedGoogle Scholar
  28. LaDu M. J., Falduto M. T., Manelli A. M., Reardon C. A., Getz G. S., and Frail D. E. (1994) Isoform-specific binding of apolipoprotein E to β-amyloid. J. Biol. Chem. 269, 23404–23406.Google Scholar
  29. LaDu M. J., Pederson T. M., Frail D. E., Reardon C. A., Getz G. S., and Falduto M. T. (1995) Purification of apolipoprotein E attenuates isoform-specific binding to β-amyloid. J. Biol. Chem. 270, 9030–9042.Google Scholar
  30. Laskowitz D. T., Sheng H., Bart R. D., Joyner K. A., Roses A. D., and Warner D. S. (1997) Apolipoprotein E-deficient mice have increased susceptibility to focal cerebral ischemia. J. Cereb. Blood Flow Metab. 17, 753–758.PubMedCrossRefGoogle Scholar
  31. Mahley R. W. (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240, 622–630.PubMedCrossRefGoogle Scholar
  32. Masliah E., Samuel W., Veinbergs I., Mallory M., Mante M., and Saitoh T. (1997) Neurodegeneration and cognitive impairment in apoE-deficient mice is ameliorated by infusion of recombinant apoE. Brain Res. 751, 307–314.PubMedCrossRefGoogle Scholar
  33. Miyata M. and Smith J. D. (1996) Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat. Genet. 14, 55–61.PubMedCrossRefGoogle Scholar
  34. Nathan B. P., Bellosta S., Sanan D. A., Weisgraber K. H., Mahley R. W., and Pitas R. E. (1994) Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 264, 850–852.PubMedCrossRefGoogle Scholar
  35. Newman T. C., Dawson P. A., Rudel L. L., and Williams D. L. (1985) Quantitation of apolipoprotein E mRNA in the liver and peripheral tissues of nonhuman primates. J. Biol. Chem. 260, 2452–2457.PubMedGoogle Scholar
  36. Nicoll J. A. R., Roberts G. W., and Graham D. I. (1995) ApoE E4 allele is associated with deposition of amyloid beta-protein following head injury. Nat. Med. 1, 135–137.PubMedCrossRefGoogle Scholar
  37. Pitas R. E., Boyles J. K., Lee S. H., Hui D., and Weisgraber K. H. (1987) Lipoproteins and their receptors in the central nervous system. J. Biol. Chem. 262, 14352–14360.PubMedGoogle Scholar
  38. Poirier J. (1994) Apolipoprotein E in animal models of CNS injury and Alzheimer’s disease. Trends Neurosci. 17, 525–530.PubMedCrossRefGoogle Scholar
  39. Poirier J., Baccichet A., Dea D., and Gauthier S. (1993) Cholesterol synthesis and lipoprotein reuptake during synaptic remodelling in hippocampus in adult rats. Neuroscience 55, 81–90.PubMedCrossRefGoogle Scholar
  40. Puttfarcken P. S., Manelli A. M., Falduto M. T., Getz G. S., and LaDu M. J. (1996) Effect of apolipoprotein E on neurite outgrowth and β-amyloid induced toxicity in developing rat primary hippocampal cultures. J. Neurochem. 68, 760–769.CrossRefGoogle Scholar
  41. Rea T. J., DeMattos R. B., and Pape M. E. (1993) Hepatic expression of genes regulating lipid metabolism in rabbits. J. Lipid Res. 34, 1901–1910.PubMedGoogle Scholar
  42. Rebeck G. W., Kindy M., and LaDu M. J. (2002) Apolipoprotein E and Alzheimer’s disease: the protective effects of ApoE2 and E3. J. Alzheimers Dis. 4, 145–154.PubMedGoogle Scholar
  43. Rebeck G. W., Reiter J. S., Strickland D. K., and Hyman B. T. (1993) Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron 11, 575–580.PubMedCrossRefGoogle Scholar
  44. Schmechel D. E., Saunders A M., Strittmattter W. J., Crain B. J., Hulette C. M., Joo S. H., et al. (1993) Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein genotype in late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 9649–9653.PubMedCrossRefGoogle Scholar
  45. Selkoe D. J. (1994a) Alzheimer’s disease: a central role for amyloid. J. Neuropathol. Exp. Neurol. 53, 438–447.PubMedGoogle Scholar
  46. Selkoe D. J. (1994b) Normal and abnormal biology of the beta-amyloid precursor protein. Ann. Rev. Neurosci. 17, 489–517.PubMedCrossRefGoogle Scholar
  47. Selkoe D. J. (1997) Alzheimer’s disease: genotypes, phenotype, and treatments. Science 275, 630–631.PubMedCrossRefGoogle Scholar
  48. Selkoe D. J. (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766.PubMedGoogle Scholar
  49. Shibata M., Yamada S., Kumar S. R., Calero M., Bading J., Frangione B., et al. (2000) Clearance of Alzheimer’s amyloid-β1-40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J. Clin. Invest. 106, 1489–1499.PubMedGoogle Scholar
  50. Sisodia S. S. (1999) Alzheimer’s disease: perspectives for the new millennium. J. Clin. Invest. 104, 1169–1170.PubMedCrossRefGoogle Scholar
  51. Stone D. J., Rozovsky I., Morgan T. E., Anderson C. P., and Finch C. E. (1998) Increased synaptic sprouting in response to estrogen via an apolipoprotein E-dependent mechanism: implications for Alzheimer’s disease. J. Neurosci. 18, 3180–3185.PubMedGoogle Scholar
  52. Stone D. J., Rozovsky I., Morgan T. E., Anderson C. P., Hajian H., and Finch C. E. (1997) Astrocytes and microglia respond to estrogen with increased apoE mRNA in vivo and in vitro. Exp. Neurol. 143, 313–318.PubMedCrossRefGoogle Scholar
  53. Strittmatter W. J., Saunders A. M., Schmechel D., Pericak-Vance M., Enghild J., Salvesen G. S., and Roses A. D. (1993a) Apolipoprotein E: high avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 1977–1981.PubMedCrossRefGoogle Scholar
  54. Strittmatter W. J., Weisgraber K. H., Huang D. Y., Dong L.-Y., Salvesen G. S., Pericak-Vance M., et al. (1993b) Binding of human apolipoprotein E to synthetic amyloid β peptide: isoform specific-effects and implications for late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 8098–8102.PubMedCrossRefGoogle Scholar
  55. Sun Y., Wu S., Bu G., Onifade M. K., Patel S. N., LaDu M. J., et al. (1998) GFAP-apoE transgenic mice: astrocyte specific expression and differing biological effects of astrocyte-secreted apoE3 and apoE4 lipoproteins. J. Neurosci. 18, 3261–3272.PubMedGoogle Scholar
  56. Teter B., Harris-White M. E., Frautschy S. A., and Cole G. M. (1999) Role of apolipoprotein E and estrogen in mossy fiber sprouting in hippocampal slice cultures. Neuroscience 91, 1009–1016.PubMedCrossRefGoogle Scholar
  57. Teter B., Raber J., Nathan B., and Crutcher K. A. (2002) The presence of apoE4, not the absence of apoE3, contributes to AD pathology. J. Alzheimers Dis. 4, 155–163.PubMedGoogle Scholar
  58. Tolar M., Keller J. N., Chan S., Mattson M. P., Marques M. A., and Crutcher K. A. (2000) Truncated apolipoprotein E (ApoE) causes increased intracellular calcium and may mediate ApoE neurotoxicity. J. Neurosci. 19, 7100–7110.Google Scholar
  59. Weisgraber K. H. (1994) Apolipoprotein E: structure-function relationships. Adv. Protein Chem. 45, 249–302.PubMedGoogle Scholar
  60. Williams D. L., Dawson P. A., Newman T. C., and Rudel L. L. (1985) Apolipoprotein E synthesis in peripheral tissues of nonhuman primates. J. Biol. Chem. 260, 2444–2451.PubMedGoogle Scholar
  61. Wisniewski T., Castano E. M., Golabek A., Vogel T., and Frangione B. (1994) Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am. J. Pathol. 145, 1030–1035.PubMedGoogle Scholar
  62. Zlokovic B. V., Ghiso J., Mackic J. B., McComb J. G., Weiss M. H., and Frangione B. (1993) Blood-brain barrier transport of circulating Alzheimer’s amyloid β. Biochem. Biophys. Res. Commun. 197, 1034–1040.PubMedCrossRefGoogle Scholar
  63. Zlokovic B. V., Martel C. L., Mackic J. B., Matsubara E., Wisniewski T., McComb J. G., et al. (1994) Brain uptake of circulating apolipoproteins J and E complexed to Alzheimer’s amyloid β. Biochem. Biophys. Res. Commun. 205, 1431–1437.PubMedCrossRefGoogle Scholar
  64. Zlokovic B. V., Martel C. L., Matsubara E., McComb J G., Zheng G., McCluskey R. T., et al. (1996) Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer’s disease amyloid β at the blood-brain and blood-cerebrospinal fluid barriers. Proc. Natl. Acad. Sci. USA 93, 4229–4234.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  1. 1.Neuroscience Discovery ResearchEli Lilly and Co., Lilly Research LaboratoriesIndianapolis

Personalised recommendations