Journal of Molecular Neuroscience

, Volume 23, Issue 3, pp 235–246 | Cite as

ApoE and Aβ1–42 interactions

Effects of isoform and conformation on structure and function
  • Arlene M. Manelli
  • W. Blaine Stine
  • Linda J. Van Eldik
  • Mary Jo LaDu
Original Article

Abstract

Abnormalities in the processing of amyloid precursor protein to amyloid-β (Aβ) are causal factors, and the presence of the ε4 allele of apolipoprotein E (apoE) is the primary risk factor for Alzheimer’s disease (AD). Based, at least in part, on these genetics, the potential structural and functional interactions between these two proteins are the focus of our research. To understand the nature of the physical interactions between apoE and Aβ, we initially utilized gel-shift assays to demonstrate that native apoE2 and E3 (associated with lipid particles) form an SDS-stable complex with Aβ that is more abundant than the apoE4:Aβ complex. We further demonstrated that exogenous apoE3 but not E4 prevents Aβ-induced neurotoxicity by a process that requires apoE receptors. In addition, both exogenous apoE3 and E4 prevent Aβ-induced, glial-mediated inflammation, also via a process that requires apoE receptors. These functional effects all occur at a molar ratio of apoE to Aβ of 1:30. Because the biological activities for both apoE and Aβ are profoundly influenced by their isoform and conformation, respectively, we further investigated the idea that apoE3 and E4 differentially interact with particular aggregation species of Aβ1–42. Our overall hypothesis is that apoE has two general functions in relation to Aβ. First, apoE interacts with oligomeric Aβ via an apoE receptor-mediated process to inhibit neurotoxicity and neuroinflammation (apoE3>apoE4) a process possibly related to binding and clearance of apoE3:oligomer complexes. Second, apoE facilitates the deposition of Aβ as amyloid (apoE4 \s>apoE3). We will continue to investigate the effect of apoE isoform and Aβ conformation on the structural and functional interactions between these two proteins in relation to the pathogenesis of AD.

Index Entries

Apolipoprotein E amyloid-beta neuroinflammation neurotoxicity Alzheimer’s disease Aβ oligomers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleshkov S., Abraham C. R., and Zannis V. I. (1997) Interaction of nascent apoE2, apoE3, and apoE4 isoforms expressed in mammalian cells with amyloid peptide β(1–40): relevance to Alzheimer’s disease. Biochemistry 36, 10571–10580.PubMedCrossRefGoogle Scholar
  2. Bales K. R., Verina T., Dodel R. C., Du Y., Altstiel L., Bender, M., et al. (1997) Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat. Genet. 17, 263,264.PubMedCrossRefGoogle Scholar
  3. Barger S. W. and Harmon A. D. (1997) Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 388, 878–881.PubMedCrossRefGoogle Scholar
  4. Barger S. W. and Mattson M. P. (1997) Isoform-specific modulation by apolipoprotein E of the activities of secreted β-amyloid precursor protein. J. Neurochem. 69, 60–67.PubMedCrossRefGoogle Scholar
  5. Beffert, U., Aumont N., Dea D., Lussier-Cacan S., Davignon J., and Poirier J. (1999) A polipoprotein E isoformspecific reduction of extracellular amyloid in neuronal cultures. Mol. Brain Res. 68, 181–185.PubMedCrossRefGoogle Scholar
  6. Chartier-Harlin M. C., Parfitt M., Legrain S., Perez-Tur J., Brousseau T., Evans A., et al. 1994. Apolipoprotein E, ε4 allele as a major risk factor for sporadic early and late-onset forms of Alzheimer’s disease: analysis of the 19q13.2 chromosomal region. Hum. Mol. Genet. 3, 569–574.PubMedCrossRefGoogle Scholar
  7. Choi-Miura, N. H., Ihara Y., Fukuchi K., Takeda M., Nakano Y., Tobe T., and Tomita M. (1992) SP-40,40 is a constituent of Alzheimer’s amyloid. Acta Neuropathol. 83, 260–264.PubMedCrossRefGoogle Scholar
  8. Chui D. H., Tanahashi H., Ozawa K., Ikeda S., Checler F., Ueda O., et al. (1999) Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat. Med. 5, 560–564.PubMedCrossRefGoogle Scholar
  9. Cole G. M. and. Ard M. D. (2000) Influence of lipoproteins on microglial degradation of Alzheimer’s amyloid beta-protein. Microsc. Res. Tech. 50, 316–24.PubMedCrossRefGoogle Scholar
  10. Cole G. M., Beech W., Frautschy S. A., Sigel J., Glasgow C., and Ard M. D. (1999) Lipoprotein effects on Abeta accumulation and degradation by microglia in vitro. J. Neurosci. Res. 57, 504–520.PubMedCrossRefGoogle Scholar
  11. Corder E. H., Saunder S. M., Risch N. J., Strittmatter W. J., Schmechel D. E., Gaskell P. C. Jr., et al. (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat. Genet. 7, 180–184.PubMedCrossRefGoogle Scholar
  12. Corder E. H., Saunder S. M., Strittmatter W. J., Schmechel D. E., Gaskell P. C., Small G. W., et al. (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923.PubMedCrossRefGoogle Scholar
  13. Cummings B. J. and Cotman C. W. (1995) Image analysis of beta-amyloid load in Alzheimer’s disease and relation to dementia severity. Lancet 346, 1524–1528.PubMedCrossRefGoogle Scholar
  14. Dahlgren K. N., Manelli A. M., Stine W. B. Jr., Baker L. K., Krafft G. A., and LaDu M. J. (2002) Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J. Biol. Chem. 277, 32046–32053.PubMedCrossRefGoogle Scholar
  15. Drouet B., Fifre A., Pincon-Raymond M., Vandekerckhove J., Rosseneu M., Gueant J. L., et al. (2001) ApoE protects cortical neurones against neurotoxicity induced by the non-fibrillar C-terminal domain of the amyloid-beta peptide. J. Neurochem. 76, 117–127.PubMedCrossRefGoogle Scholar
  16. Evans K. C., Berger E. P., Cho C. G., Weisgraber K. H., and Lansbury P. T. (1995) Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 92, 763–767.PubMedCrossRefGoogle Scholar
  17. Frisoni G. B., Govoni S., Geroldi C., Bianchetti A., Calabresi L., Franceschini G., and Trabucchi M. (1995) Gene dose of the epsilon 4 allele of apolipoprotein E and disease progression in sporadic late-onset Alzheimer’s disease. Ann. Neurol. 37, 596–604.PubMedCrossRefGoogle Scholar
  18. Ghiso J., Matsubara E., Koudinov A., Choi-Miura N. H., Tomita M., Wisniewski T., and Frangione B. (1993) The cerebrospinal-fluid form of Alzheimer’s amyloid beta is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem. J. 293, 27–30.PubMedGoogle Scholar
  19. Guillaume D., Bertrand P., Dea D., Davignon J., and Poirier J. (1996) Apolipoprotein E and low-density lipoprotein binding and internalization in primary cultures of rat astrocytes: isoform-specific alterations. J. Neurochem. 66, 2410–2418.PubMedCrossRefGoogle Scholar
  20. Haass C. and Steiner H. (2001) Protofibrils, the unifying toxic molecule of neurodegenerative disorders? Nat. Neurosci. 4, 859,860.PubMedCrossRefGoogle Scholar
  21. Hardy J. and Selkoe D. J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356.PubMedCrossRefGoogle Scholar
  22. Hartley D. M., Walsh D. M., Ye C. P., Diehl T., Vasquez S., Vassilev P. M., et al. (1999) Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 19, 8876–8884.PubMedGoogle Scholar
  23. Hartman R. E., Laurer H., Longhi L., Bales K. R., Paul S. M., McIntosh T. K., and Holtzman D. M. (2002) Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer’s disease. J. Neurosci. 22, 10083–10087.PubMedGoogle Scholar
  24. Holtzman D. M., Bales K. R., Tenkova T., Fagan A. M., Parsadanian M., Sartorius L. J., et al. (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 97, 2892–2897.PubMedCrossRefGoogle Scholar
  25. Holtzman D. M., Bales K. R., Wu S., Bhat P., Parsadanian M., Fagan A. M., et al. (1999) In vivo expression of apolipoprotein E reduces amyloid-β deposition in a mouse model of Alzheimer’s disease. J. Clin. Invest. 103, R15-R21.PubMedGoogle Scholar
  26. Houlden H., Crook R., Duff K., Collinge J., Roques P., Rossor M., and Hardy J. (1993) Confirmation that the ApoE4 allele is associated with late onset, familial Alzheimer’s disease. Neurodegeneration 2, 283–286.Google Scholar
  27. Hu J.. LaDu M. J, and Van Eldik L. J. (1998) Apolipoprotein E attenuates beta-amyloid-induced astrocyte activation. J. Neurochem. 71, 1626–1634.PubMedCrossRefGoogle Scholar
  28. Irizarry M. C., Cheung B. S., Rebeck G. W., Paul S. M., Bales K. R., and Hyman B. T. (2000) Apolipoprotein E affects the amount, form, and anatomical distribution of amyloid beta-peptide deposition in homozygous APP (V717F) transgenic mice. Acta Neuropathol. (Berl.) 100, 451–458.CrossRefGoogle Scholar
  29. Irizarry M. C., Soriano F., McNamara M., Page K. J., Schenk D., Games D., and Hyman B. T. (1997) Aβ deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J. Neurosci. 17, 7053–7059.PubMedGoogle Scholar
  30. Jordán J., Galindo M. F., Miller R. J., Reardon C. A., Getz G. S., and LaDu M. J. (1998) Isoform-specific effect of apolipoprotein E on cell survival and β-amyloid-induced toxicity in rat hippocampal pyramidal neuronal cultures. J. Neurosci. 18, 195–204.PubMedGoogle Scholar
  31. Klein W. L., Krafft G. A., and Finch C. E. (2001) Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci. 24, 219–224.PubMedCrossRefGoogle Scholar
  32. Kuo Y. M., Emmerling M. R., Vigo-Pelfrey C., Kasunic T. C., Kirkpatrick J. B., Murdoch G. H., et al. (1996) Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J. Biol. Chem. 271, 4077–81.PubMedCrossRefGoogle Scholar
  33. LaDu M. J., Falduto M. T., Manelli A. M., Reardon C. A., Getz G. S., and Frail D. E. (1994) Isoform-specific binding of apolipoprotein E to β-amyloid. J. Biol. Chem. 269, 23404–23406.Google Scholar
  34. LaDu M. J., Lukens J. R., Reardon C. A., and Getz G. S. (1997) Association of human, rat, and rabbit apolipoprotein E with beta-amyloid. J. Neurosci. Res. 49, 9–18.PubMedCrossRefGoogle Scholar
  35. LaDu M. J., Pederson T. M., Frail D. E., Reardon C. A., Getz G. S., and Falduto M. T. (1995) Purification of apolipoprotein E attenuates isoform-specific binding to β-amyloid. J. Biol. Chem. 270, 9030–9042.Google Scholar
  36. LaDu M. J., Shah J. A., Reardon C. A., Getz G. S., Bu G., Hu J., et al. (2000) Apolipoprotein E receptors mediate the effects of beta-amyloid on astrocyte cultures. J. Biol. Chem. 275, 33974–33980.PubMedCrossRefGoogle Scholar
  37. LaDu M. J., Shah J. A., Reardon C. A., Getz G. S., Bu G., Hu J., et al. (2001) Apolipoprotein E and apolipoprotein E receptors modulate A beta-induced glial neuroinflammatory responses. Neurochem. Int. 39, 427–434.PubMedCrossRefGoogle Scholar
  38. Lambert M. P., Barlow A. K., Chromy B. A., Edwards C., Freed R., Liosatos M., et al. (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453.PubMedCrossRefGoogle Scholar
  39. Lansbury P. T. Jr. (1999) Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc. Natl. Acad. Sci. USA 96, 3342–3344.PubMedCrossRefGoogle Scholar
  40. Laskowitz D. T., Goel S., Bennett E. R., and Matthew W. D. (1997) Apolipoprotein E suppresses glial cell secretion of TNF alpha. J. Neuroimmunol. 76, 70–74.PubMedCrossRefGoogle Scholar
  41. Laskowitz, D. T., Matthew W. D., Bennett E. R., Schmechel D., Herbstreith M. H., Goel S., and McMillian M. K. (1998) Endogenous apolipoprotein E suppresses LPS-stimulated microglial nitric oxide production. Neuroreport 9, 615–618.PubMedCrossRefGoogle Scholar
  42. Lue L. F., Kuo Y. M., Roher A. E., Brachova L., Shen Y., Sue L., et al. (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am. J. Pathol. 155, 853–862.PubMedGoogle Scholar
  43. Lynch, J. R., Morgan D., Mance J., Matthew W. D., and Laskowitz D. T. (2001) Apolipoprotein E modulates glial activation and the endogenous central nervous system inflammatory response. J. Neuroimmunol. 114, 107–113.PubMedCrossRefGoogle Scholar
  44. Ma J., Brewer H. B. Jr., and Potter H. (1996) Alzheimer A beta neurotoxicity: promotion by antichymotrypsin, ApoE4; inhibition by A beta-related peptides. Neurobiol. Aging 17, 773–780.PubMedCrossRefGoogle Scholar
  45. Ma J., Yee A., Brewer H. B., Das S., and Potter H. (1994) Amyloid-associated proteins alpha-1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature 372, 92–94.PubMedCrossRefGoogle Scholar
  46. Mak Y. T., Chiu H., Woo J., Kay R., Chan Y. S., Hui E., et al. (1996) Apolipoprotein E genotype and Alzheimer’s disease in Hong Kong elderly Chinese. Neurology 46, 146–149.PubMedGoogle Scholar
  47. Matsubara E., Frangione B., and Ghiso J. (1995) Characterization of apolipoprotein J-Alzheimer’s Aβ interaction. J. Biol. Chem. 270, 7563–7567.PubMedCrossRefGoogle Scholar
  48. McLean C. A., Cherny R. A., Fraser F. W., Fuller S. J., Smith M. J., Beyreuther K., et al. (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46, 860–866.PubMedCrossRefGoogle Scholar
  49. Miyata M. and Smith J. D. (1996) Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat. Genet. 14, 55–61.PubMedCrossRefGoogle Scholar
  50. Mouchel Y., Lefrancois T., Fages C., and Tardy M. (1995) Apolipoprotein E expression in astrocytes: developmental pattern and regulation. Neuroreport 7, 205–208.PubMedGoogle Scholar
  51. Namba Y., Tomonaga M., Kawasaki H., Otomo E., and Ikeda K. (1991) Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease kuru plaque amyloid in Creutzfeldt-Jacob disease. Brain Res. 541, 163–166.PubMedCrossRefGoogle Scholar
  52. Naslund J., Haroutunian V., Mohs R., Davis K. L., Davies P., Greengard P., and Buxbaum J. D. (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283, 1571–1577.PubMedCrossRefGoogle Scholar
  53. Oda, T., Wals P., Osterburg H. H., Johnson S. A., Pasinetti G. M., Morgan T. E., et al. (1995) Clusterin (apoJ) alters the aggregation of amyloid beta-peptide (A beta 1-42) and forms slowly sedimenting A beta complexes that cause oxidative stress. Exp. Neurol. 136, 22–31.PubMedCrossRefGoogle Scholar
  54. Pericak-Vance M. A., Johnson C. C., Rimmler J. B., Saunders A. M., Robinson L. C., D’Hondt E. G., et al. (1996) Alzheimer’s disease and apolipoprotein E-4 allele in an Amish population. Ann. Neurol. 39, 700–704.PubMedCrossRefGoogle Scholar
  55. Rebeck G. W., Reiter J. S, Strickland D. K., and Hyman B. T. (1993) Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron 11, 575–580.PubMedCrossRefGoogle Scholar
  56. Roher A. E., Baudry J., Chaney M. O., Kuo Y. M., Stine W. B., and Emmerling M. R. (2000) Oligomerization and fibril assembly of the amyloid-beta protein. Biochim. Biophys. Acta 1502, 31–43.PubMedGoogle Scholar
  57. Roher A. E., Chaney M. O., Kuo Y. M., Webster S. D., Stine W. B., Haverkamp L. J., et al. (1996) Morphology and toxicity of Abeta-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J. Biol. Chem. 271, 20631–20635.PubMedCrossRefGoogle Scholar
  58. Royston M. C., Mann D., Pickering-Brown S., Owen F., Perry R., Raghavan R., et al. 1994 Apolipoprotein E epsilon 2 allele promotes longevity and protects patients with Down’s syndrome from dementia. Neuroreport 5, 2583–2585.PubMedCrossRefGoogle Scholar
  59. Sanan D. A., Weisgraber K. H., Russel S. J., Mahley R. W., Huang D., Saunders A., et al. (1994) Apolipoprotein E associates with β amyloid peptide of Alzheimer’s disease to form novel monofibrils. J. Clin. Invest. 94, 860–869.PubMedCrossRefGoogle Scholar
  60. Saunders A. M., Schmader K., Breitner J. C. S., Benson M. D., Brown W. T., Goldfarb L., et al. (1993) Apolipoprotein E ε4 allele distributions in late-onset Alzheimer’s disease and in other amyloid-forming diseases. Lancet 342, 710–711.PubMedCrossRefGoogle Scholar
  61. Selkoe D. J. (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766.PubMedGoogle Scholar
  62. Small D. H. (1998) The amyloid cascade hypothesis debate: emerging consensus on the role of A beta and amyloid in Alzheimer’s disease, in The Sixth International Conference on Alzheimer’s disease, Vol. 5, The Parthenon Publishing Group, Amsterdam, The Netherlands, pp. 301–304.Google Scholar
  63. Stine W. B. Jr., Dahlgren K. N., Krafft G. K., and LaDu M. J. (2003) In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J. Biol Chem. 278, 11612–11622.PubMedCrossRefGoogle Scholar
  64. Strittmatter W. J., Saunders A. M., Schmechel D., Pericak-Vance M., Enghild J., Salvesen G. S., and Roses A. D. (1993) Apolipoprotein E: high avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 1977–1981.PubMedCrossRefGoogle Scholar
  65. Sullivan P. M., Mezdour H., Aratani Y., Knouff C., Najib J., Reddick R. L., et al. (1997) Targeted replacement of the mouse apolipoprotein E gene with the common human APOE3 allele enhances diet-induced hypercholesterolemia and atherosclerosis. J. Biol. Chem. 272, 17972–17980.PubMedCrossRefGoogle Scholar
  66. Terry R. D. 2001 An honorable compromise regarding amyloid in Alzheimer disease. Ann Neurol. 49, 684.PubMedCrossRefGoogle Scholar
  67. Tokuda T., Calero M., Matsubara E., Vidal R., Kumar A., Permanne B., et al. (2000) Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer’s amyloid β-peptide. Biochem. J. 348, 359–365.PubMedCrossRefGoogle Scholar
  68. Tsai M. S., Tangalos E. G., Petersen R. C., Smith G. E., Schaid D. J., Kokmen E., et al. (1994) Apolipoprotein E: risk factor for Alzheimer disease. Am. J. Hum. Genet. 54, 643–649.PubMedGoogle Scholar
  69. Urmoneit B., Prikulis I., Wihl G., D’Urso D., Frank R., Heeren J., et al. (1997) Cerebrovascular smooth muscle cells internalize Alzheimer amyloid beta protein via a lipoprotein pathway: implications for cerebral amyloid angiopathy. Lab. Invest. 77, 157–166.PubMedGoogle Scholar
  70. van Duijn C. M., de Knijff P., Cruts M., Wehnert A., Havekes L. M., Hofman A., and Van Broeckhoven C. (1994) Apolipoprotein E4 allele in a population-based study of early-onset Alzheimer’s disease. Nat. Genet. 7, 74–78.PubMedCrossRefGoogle Scholar
  71. Walsh D. M., Hartley D. M., Kusumoto Y., Fezoui Y., Condron M. M., Lomakin A., et al. (1999) Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J. Biol. Chem. 274, 25945–25952.PubMedCrossRefGoogle Scholar
  72. Walsh D. M., Klyubin I., Fadeeva J. V., Cullen W. K., Anwyl R., Wolfe M. S., et al. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539.PubMedCrossRefGoogle Scholar
  73. Whitson J. S., Mims M. P., Strittmatter W. J., Yamaki T., Morrisett J. D., and Appel S. H. (1994) Attenuation of the neurotoxic effect of A beta amyloid peptide by apolipoprotein E. Biochem. Biophys. Res. Commun. 199, 163–170.PubMedCrossRefGoogle Scholar
  74. Winkler K., Scharnagl H., Tisljar U., Hoschutzky H., Friedrich I., Hoffmann M. M., et al. (1999) Competition of Abeta amyloid peptide and apolipoprotein E for receptor-mediated endocytosis. J. Lipid Res. 40, 447–455.PubMedGoogle Scholar
  75. Wisniewski T. and Frangione B. (1992) Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci. Lett. 135, 235–238.PubMedCrossRefGoogle Scholar
  76. Wisniewski T., Castano E. M., Golabek A., Vogel T., and Frangione B. (1994) Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am. J. Pathol. 145, 1030–1035.PubMedGoogle Scholar
  77. Wisniewski T., Golabek A., Matsubara E., Ghiso J., and Frangione B. (1993) Apolipoprotein E: binding to soluble Alzheimer’s beta-amyloid. Biochem. Biophys. Res. Commun. 192, 359–365.PubMedCrossRefGoogle Scholar
  78. Yang D. S., Small D. H., Seydel U., Smith J. D., Hallmayer J., Gandy S. E., and Martins R. N. (1999) Apolipoprotein E promotes the binding and uptake of beta-amyloid into Chinese hamster ovary cells in an isoform-specific manner. Neuroscience 90, 1217–1226.PubMedCrossRefGoogle Scholar
  79. Yang D.- S., Smith J. D., Zhou Z., Gandy S., and Martins R. N. (1997) Characterization of the binding of amyloid-β peptide to cell culture-derived native apolipoprotein E2, E3, and E4 isoforms and to isoforms from human plasma. J. Neurochem. 68, 721–725.PubMedCrossRefGoogle Scholar
  80. Yu C. E., Payami H., Olson J. M., Boehnke M., Wijsman E. M., Orr H. T., et al. (1994) The apolipoprotein E/CI/CII gene cluster and late-onset Alzheimer disease. Am. J. Hum. Genet. 54, 631–642.PubMedGoogle Scholar
  81. Zhou Z., Smith J. D., Greengard P., and Gandy S. (1996) Alzheimer amyloid-beta peptide forms denaturant-resistant complex with type epsilon 3 but not type epsilon 4 isoform of native apolipoprotein E. Mol. Med. 2, 175–180.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Arlene M. Manelli
    • 1
  • W. Blaine Stine
    • 1
  • Linda J. Van Eldik
    • 2
    • 3
    • 4
  • Mary Jo LaDu
    • 1
    • 3
    • 4
  1. 1.Department of Medicine, Division of GeriatricsEvanston Northwestern Healthcare Research InstituteEvanston
  2. 2.Department of Cell and Molecular Biology, Feinberg School of MedicineNorthwestern UniversityChicago
  3. 3.Department of Drug Discovery Program, Feinberg School of MedicineNorthwestern UniversityChicago
  4. 4.Department of Alzheimer’s Disease Core Center, Feinberg School of MedicineNorthwestern UniversityChicago

Personalised recommendations