Advertisement

Journal of Molecular Neuroscience

, Volume 23, Issue 1–2, pp 123–142 | Cite as

Signal transduction therapeutics

Relevance for alzheimer’s disease
  • Odete A. B. da Cruz e Silva
  • Margarida Fardilha
  • Ana Gabriela Henriques
  • Sandra Rebelo
  • Sandra Vieira
  • Edgar F. Da Cruz e Silva
Review Article

Abstract

It is now widely accepted that abnormal processing of the Alzheimer’s amyloid precursor protein (APP) can contribute significantly to Alzheimer’s disease (AD). APP can be processed proteolytically to give rise to several fragments, including toxic β-amyloid (Aβ) fragments that are subsequently deposited as amyloid plaques in brains of AD patients. Data from several groups have revealed that APP processing can be regulated by phosphorylation and phosphorylation-dependent events. Consequently, the key players controlling such signal transduction cascades, the protein kinases and phosphatases, as well as their corresponding regulatory proteins, take on added importance. By characterizing how altered cell signaling might contribute to APP processing, one can identify potential targets for signal transduction therapeutics. Here, we review APP phosphorylation and phosphorylation-dependent events in APP processing, with particular focus on phosphatases that impact on APP processing, and their binding and regulatory proteins. Particular attention is given to protein phosphatase 1 (PP1), as it seems to have a central role not only in the regulation of APP cleavage events but also in the molecular control of neurotransmission and in age-related memory deterioration. The development of specific drugs targeting protein phosphatase binding proteins would constitute potential therapeutic agents with a high degree of specificity. The identification of such targets provides novel therapeutic avenues for normal aging and for neurodegenerative conditions such as AD.

Index Entries

Processing protein phosphorylation protein phosphatases PP1 PP2A PP2B binding proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal-Mawal A. and Paudel H. K. (2001) Neuronal Cdc2-like protein kinase (Cdk5/p25) is associated with protein phosphatase 1 and phosphorylates inhibitor-2. J. Biol. Chem. 276, 23712–23718.PubMedCrossRefGoogle Scholar
  2. Aitken A., Bilham T., Cohen P., Aswad D., and Greengard P. (1981) A specific substrate from rabbit cerebellum for guanosine-3′;5′-monophosphate-dependent protein kinase. III. Amino acid sequences at the two phosphorylation sites. J. Biol. Chem. 256, 3501–3506.PubMedGoogle Scholar
  3. Allen P. B., Kwon Y. G., Nairn A. C., and Greengard P. (1998) Isolation and characterization of PNUTS, a putative protein phosphatase 1 nuclear targeting subunit. J. Biol. Chem. 273, 4089–4095.PubMedCrossRefGoogle Scholar
  4. Allen P. B., Ouimet C. C., and Greengard P. (1997) Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc. Natl. Acad. Sci. USA 94, 9956–9961.PubMedCrossRefGoogle Scholar
  5. Alvarez A., Toro R., Caceres A., and Maccioni R. B. (1999) Inhibition of tau phosphorylating protein kinase cdk5 prevents β-amyloid-induced neuronal death. FEBS Lett. 459, 421–426.PubMedCrossRefGoogle Scholar
  6. Amador F. C., Henriques A. G., da Cruz e Silva O. A. B., and da Cruz e Silva E. F. (2004) Protein phosphatase 1 as a marker for cellular stress. Neurotoxicology and Teratology, 26, 387–395.PubMedCrossRefGoogle Scholar
  7. Ando K., Iijima K. I., Elliott J. I., Kirino Y., and Suzuki T. (2001) Phosphorylation-dependent regulation of the interaction of amyloid precursor protein with Fe65 affects the production of beta-amyloid. J. Biol. Chem. 276, 40353–40361.PubMedCrossRefGoogle Scholar
  8. Ando K., Oishi M., Takeda S., Iijima K., Isohara T., Nairn A. C., et al. (1999) Role of phosphorylation of Alzheimer’s amyloid precursor protein during neuronal differentiation. J. Neurosci. 19, 4421–4427.PubMedGoogle Scholar
  9. Aplin A. E., Gibb G. M., Jacobsen J. S., Gallo J. M., and Anderton B. H. (1996) In vitro phosphorylation of the cytoplasmic domain of the amyloid precursor protein by glycogen synthase kinase-3beta. J. Neurochem. 67, 699–707.PubMedCrossRefGoogle Scholar
  10. Ayllón V., Cayla X., Garcia A., Fleischer A., and Rebollo A. (2002) The anti-apoptotic molecules Bcl-xL and Bcl-w target protein phosphatase 1alpha to Bad. Eur. J. Immunol. 32, 1847–1855.PubMedCrossRefGoogle Scholar
  11. Ayllón V., Cayla X., Garcia A., Roncal F., Fernandez R., Albar J. P., et al. (2001) Bcl-2 targets protein phosphatase 1 alpha to Bad. J. Immunol. 166, 7345–7352.PubMedGoogle Scholar
  12. Baek S. H., Ohgi K. A., Rose D. W., Koo E. H., Glass C. K., and Rosenfeld M. G. (2002) Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell 110, 55–67.PubMedCrossRefGoogle Scholar
  13. Bennecib M., Gong C. X., Grundke-Iqbal I., and Iqbal K. (2000) Role of protein phosphatase-2A and -1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain. FEBS Lett. 485, 87–93.PubMedCrossRefGoogle Scholar
  14. Berezovska O., Jack C., McLean P., Aster J. C., Hicks C., Xia W., et al. (2000) Aspartate mutations in presenilin and gamma-secretase inhibitors both impair notch1 proteolysis and nuclear translocation with relative preservation of notch1 signaling. J. Neurochem. 75, 583–593.PubMedCrossRefGoogle Scholar
  15. Bibb J. A., Nishi A., O’Callaghan J. P., Ule J., Lan M., Snyder G. L., et al. (2001) Phosphorylation of protein phosphatase inhibitor-1 by Cdk5. J. Biol. Chem. 276, 14490–14497.PubMedGoogle Scholar
  16. Bollen M. (2001) Combinatorial control of protein phosphatase-1. Trends Biochem. Sci. 26, 426–431.PubMedCrossRefGoogle Scholar
  17. Boney C. M., Sekimoto H., Gruppuso P. A., and Frackelton A. R., Jr. (2001) Src family tyrosine kinases participate in insulin-like growth factor I mitogenic signaling in 3T3-L1 cells. Cell Growth Differ. 12, 379–386.PubMedGoogle Scholar
  18. Borg J. P., Lopez-Figueroa M. O., de Taddeo-Borg M., Kroon D. E., Turner R. S., Watson S. J., and Margolis B. (1999) Molecular analysis of the X11-mLin-2/CASK complex in brain. J. Neurosci. 19, 1307–1316.PubMedGoogle Scholar
  19. Borg J. P., Yang Y., De Taddeo-Borg M., Margolis B., and Turner R. S. (1998) The X11alpha protein slows cellular amyloid precursor protein processing and reduces Abeta40 and Abeta42 secretion. J. Biol. Chem. 273, 14761–14766.PubMedCrossRefGoogle Scholar
  20. Bressler S. L., Gray M. D., Sopher B. L., Hu Q., Hearn M. G., Pham D. G., et al. (1996) cDNA cloning and chromosome mapping of the human Fe65 gene: interaction of the conserved cytoplasmic domains of the human betaamyloid precursor protein and its homologues with the mouse Fe65 protein. Hum. Mol. Genet. 5, 1589–1598.PubMedCrossRefGoogle Scholar
  21. Brodehl J. (1994) Consensus statements on the optimal use of cyclosporine in pediatric patients. Transplant. Proc. 26, 2759–2762.PubMedGoogle Scholar
  22. Busciglio J., Gabuzda D. H., Matsudaira P., and Yanker B. A. (1993) Generation of β-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc. Natl. Acad. Sci. USA 90, 2092–2096.PubMedCrossRefGoogle Scholar
  23. Buxbaum J. D., Gandy S. E., Cicchetti P., Ehrlich M. E., Czernik A. J., Fracasso R. P., et al. (1990) Processing of Alzheimer beta/A4 amyloid precursor protein: modulation by agents that regulate protein phosphorylation. Proc. Natl. Acad. Sci. USA 87, 6003–6006.PubMedCrossRefGoogle Scholar
  24. Buxbaum J. D., Koo E. H., and Greengard P. (1993) Protein phosphorylation inhibits production of Alzheimer amyloid β/A4 peptide. Proc. Natl. Acad. Sci. USA 90, 9195–9198.PubMedCrossRefGoogle Scholar
  25. Cao X. and Sudhof T. C. (2001) A transcriptionally active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115–120.PubMedCrossRefGoogle Scholar
  26. Caporaso G. L., Gandy S. E., Buxbaum J. D., Ramabhadran T. V., and Greengard P. (1992) Protein phosphorylation regulates secretion of Alzheimer beta/A4 amyloid precursor protein. Proc. Natl. Acad. Sci. USA 89, 3055–3059.PubMedCrossRefGoogle Scholar
  27. Caputi A., Barindelli S., Pastorino L., Cimino M., Buxbaum J. D., Cattabeni F., and Di Luca M. (1997) Increased secretion of the amino-terminal fragment of amyloid precursor protein in brains of rats with a constitutive up-regulation of protein kinase C. J. Neurochem. 68, 2523–2529.PubMedCrossRefGoogle Scholar
  28. Caputo C. B., Sygowski L. A., Scott C. W., and Sobel I. R. (1992) Role of tau in the polymerization of peptides from beta-amyloid precursor protein. Brain Res. 597, 227–232.PubMedCrossRefGoogle Scholar
  29. Carlin R. K., Grab D. J., and Siekevitz P. (1981) Function of a calmodulin in postsynaptic densities. III. Calmodulin-binding proteins of the postsynaptic density. J. Cell Biol. 89, 449–455.PubMedCrossRefGoogle Scholar
  30. Chan S. L., Pedersen W.A., Zhu H., and Mattson M. P. (2002) Numb modifies neuronal vulnerability to amyloid beta-peptide in an isoform-specific manner by a mechanism involving altered calcium homeostasis: implications for neuronal death in Alzheimer’s disease. Neuromol. Med. 1, 55–67.CrossRefGoogle Scholar
  31. Checler F. (1995) Processing of the β-amyloid precursor protein and its regulation in Alzheimer’s disease. J. Neurochem. 65, 1431–1444.PubMedCrossRefGoogle Scholar
  32. Chen Q. S., Wei W. Z., Shimahara T., and Xie C. W. (2002) Alzheimer amyloid beta-peptide inhibits the late phase of long-term potentiation through calcineurin-dependent mechanisms in the hippocampal dentate gyrus. Neurobiol. Learn. Mem. 77, 354–371.PubMedCrossRefGoogle Scholar
  33. Chen S. T., Gentleman S. M., Garey L. J., and Jen L. S. (1996) Distribution of beta-amyloid precursor and B-cell lymphoma protooncogene proteins in the rat retina after optic nerve transection or vascular lesion. J. Neuropathol. Exp. Neurol. 55, 1073–1082.PubMedGoogle Scholar
  34. Chen W. J., Goldstein J. L., and Brown M. S. (1990) NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J. Biol. Chem. 265, 3116–3123.PubMedGoogle Scholar
  35. Chiang C. W., Harri G., Ellig C., Masters S. C., Subramanian R., Shenolikar S., et al. (2001) Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin- 3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation. Blood 97, 1289–1297.PubMedCrossRefGoogle Scholar
  36. Chun Y. S., Shima H., Nagasaki K., Sugimura T., and Nagao M. (1994) PP1 gamma 2, a testis-specific protein-serine/threonine-phosphatase type 1 catalytic subunit, is associated with a protein having high sequence homology with the 78-kDa glucose-regulated protein, a member of the 70-kDa heat shock protein family. Proc. Natl. Acad. Sci. USA 91, 3319–3323.PubMedCrossRefGoogle Scholar
  37. Cohen P. (1989) The structure and regulation of protein phosphatases. Annu. Rev. Biochem. 58, 453–508.PubMedCrossRefGoogle Scholar
  38. Cohen P. T. (1997) Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem. Sci. 22, 245–251.PubMedCrossRefGoogle Scholar
  39. Cohen P. T. W. (2002) Protein phosphatase 1—targeted in many directions. J. Cell Sci. 115, 241–256.PubMedGoogle Scholar
  40. Connor J. H., Weiser D. C., Li S., Hallenbeck J. M., and Shenolikar S. (2001) Growth arrest and DNA damage-inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. Mol. Cell. Biol. 21, 6841–6850.PubMedCrossRefGoogle Scholar
  41. da Cruz e Silva E. F. and da Cruz e Silva O. A. B. (2003) APP phosphorylation. Neurochem. Res. 28, 1553–1561.PubMedCrossRefGoogle Scholar
  42. da Cruz e Silva E. F., da Cruz e Silva O. A. B., Zaia C. T. V., and Greengard P. (1995a) Inhibition of protein phosphatase 1 stimulates secretion of Alzheimer amyloid precursor protein. Mol. Med. 1, 535–541.PubMedGoogle Scholar
  43. da Cruz e Silva E. F., Fox C. A., Ouimet C. C., Gustafson E., Watson S. J., and Greengard P. (1995b) Differential expression of protein phosphatase 1 isoforms in mammalian brain. J. Neurosci. 15, 3375–3389.PubMedGoogle Scholar
  44. da Cruz e Silva E. F. and O’Callaghan J. P. (1997) Protein phosphatases as potential mediators of neurotoxicity. In: Comprehensive Toxicology, vol. XI (Sipes, I. G., McQueen C. A., and Gandolphi A. J., eds.), Elsevier, Amsterdam, pp. 181–199.Google Scholar
  45. da Cruz e Silva O. B., Alemany S., Campbell D. G., and Cohen P. T. W. (1987) Isolation and sequence analysis of a cDNA clone encoding the entire catalytic subunit of a type-2A protein phosphatase. FEBS Lett. 221, 415–422.PubMedCrossRefGoogle Scholar
  46. da Cruz e Silva O. B. and Cohen P. T. W. (1987) A second catalytic subunit of type-2A protein phosphatase from rabbit skeletal muscle. FEBS Lett. 226, 176–178.PubMedCrossRefGoogle Scholar
  47. da Cruz e Silva O. B., da Cruz e Silva E. F., and Cohen P. T. W. (1988) Identification of a novel protein phosphatase catalytic subunit by cDNA cloning. FEBS Lett. 242, 106–110.PubMedCrossRefGoogle Scholar
  48. da Cruz e Silva O. A. B., Iverfeldt K., Oltersdorf T., Sinha S., Lieberburg I., Ramabhadran T. V., et al. (1993) Regulated cleavage of Alzheimer β-amyloid precursor protein in the absence of the cytoplasmic tail. Neuroscience 57, 873–877.PubMedCrossRefGoogle Scholar
  49. Dekosky S. T. and Scheff S. W. (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlations with cognitive severity. Ann. Neurol. 27, 457–464.PubMedCrossRefGoogle Scholar
  50. Delatour B., Mercken L., El Hachimi K. H., Colle M. A., Pradier L., and Duyckaerts C. (2001) FE65 in Alzheimer’s disease: neuronal distribution and association with neurofibrillary tangles. Am. J. Pathol. 158, 1585–1591.PubMedGoogle Scholar
  51. Delobel P., Flament S., Hamdane M., Delacourte A., Vilain J. P., and Buee L. (2002a) Modelling Alzheimer-specific abnormal tau phosphorylation independently of GSK3beta and PKA kinase activities. FEBS Lett. 516, 151–155.PubMedCrossRefGoogle Scholar
  52. Delobel P., Flament S., Hamdane M., Mailliot C., Sambo A. V., Begard S., et al. (2002b) Abnormal tau phosphorylation of the Alzheimer-type also occurs during mitosis. J. Neurochem. 83, 412–420.PubMedCrossRefGoogle Scholar
  53. De Matteis M. A., Santini G., Kahn R. A., Di Tulli G., and Luini A. (1993) Receptor and protein kinase C-mediated regulation of ARF binding to the Golgi complex. Nature 364, 818–821.PubMedCrossRefGoogle Scholar
  54. Desdouits F., Buxbaum J. D., Desdouits-Magnen J., Nairn A. C., and Greengard P. (1996) Amyloid alpha peptide formation in cell-free preparations. Regulation by protein kinase C, calmodulin, and calcineurin. J. Biol. Chem. 271, 24670–24674.PubMedCrossRefGoogle Scholar
  55. Desdouits-Magnen J., Desdouits F., Takeda S., Syu L. J., Saltiel A. R., Buxbaum J. D., et al. (1998) Regulation of secretion of Alzheimer amyloid precursor protein by the mitogen-activated protein kinase cascade. J. Neurochem. 70, 524–530.PubMedCrossRefGoogle Scholar
  56. Dinischiotu A., Beullens M., Stalmans W., and Bollen M. (1997) Identification of sds22 as an inhibitory subunit of protein phosphatase-1 in rat liver nuclei. FEBS Lett. 402, 141–144.PubMedCrossRefGoogle Scholar
  57. Doherty M. J., Young P. R., and Cohen P. T. (1996) Amino acid sequence of a novel protein phosphatase 1 binding protein (R5) which is related to the liver-and muscle-specific glycogen binding subunits of protein phosphatase 1. FEBS Lett. 399, 339–343.PubMedCrossRefGoogle Scholar
  58. Durfee T., Becherer K., Chen P. L., Yeh S. H., Yang Y., Kilburn A. E., et al. (1993) The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7, 555–569.PubMedCrossRefGoogle Scholar
  59. Dyrks T., Monning U., Beyreuther K., and Turner J. (1994) Amyloid precursor protein secretion and βA4 amyloid generation are not mutually exclusive. FEBS Lett. 349, 210–214.PubMedCrossRefGoogle Scholar
  60. Enz R. (2002) The metabotropic glutamate receptor mGluR7b binds to the catalytic gamma-subunit of protein phosphatase 1. J. Neurochem. 81, 1130–1140.PubMedCrossRefGoogle Scholar
  61. Ermak G., Morgan T. E., and Davies K. J. (2001) Chronic overexpression of the calcineurin inhibitory gene DSCR1 (Adapt78) is associated with Alzheimer’s disease. J. Biol. Chem. 276, 38787–38794.PubMedCrossRefGoogle Scholar
  62. Ermekova K. S., Zambrano N., Linn H., Minopoli G., Gertler F., Russo T. and Sudol M. (1997) The WW domain of neural protein FE65 interacts with proline-rich motifs in Mena, the mammalian homolog of Drosophila enabled. J. Biol. Chem. 272, 32869–32877.PubMedCrossRefGoogle Scholar
  63. Esch F. S., Keim P. S., Beattie E. C., Blacher R. W., Culwell A. R., Oltersdorf T., et al. (1990) Cleavage of β-amyloid peptide during constitutive processing of its precursor. Science 248, 1122–1124.PubMedCrossRefGoogle Scholar
  64. Eto M., Senba S., Morita F., and Yazawa M. (1997) Molecular cloning of a novel phosphorylation-dependent inhibitory protein of protein phosphatase-1 (CPI17) in smooth muscle: its specific localization in smooth muscle. FEBS Lett. 410, 356–360.PubMedCrossRefGoogle Scholar
  65. Fresu M., Bianchi M., Parsons J. T., and Villa-Moruzzi E. (2001) Cell-cycle-dependent association of protein phosphatase 1 and focal adhesion kinase. Biochem. J. 358, 407–414.PubMedCrossRefGoogle Scholar
  66. Gabuzda D., Busciglio J., and Yanker B. A. (1993) Inhibition of β-amyloid production by activation of protein kinase C. J. Neurochem. 61, 2326–2329.PubMedCrossRefGoogle Scholar
  67. Gandy S. and Greengard P. (1994) Processing of Alzheimer A beta-amyloid precursor protein: cell biology, regulation, and role in Alzheimer disease. Int. Rev. Neurobiol. 36, 29–50.PubMedCrossRefGoogle Scholar
  68. Gao Y. and Pimplikar S. W. (2001) The gamma-secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus. Proc. Natl. Acad. Sci. USA 98, 14979–14984.PubMedCrossRefGoogle Scholar
  69. Genoux D., Haditsch U., Knobloch M., Michalon A., Storm D., and Mansuy I. M. (2002) Protein phosphatase 1 is a molecular constraint on learning and memory. Nature 418, 970–975.PubMedCrossRefGoogle Scholar
  70. Gertler F. B., Niebuhr K., Reinhard M., Wehland J., and Soriano P. (1996) Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87, 227–239.PubMedCrossRefGoogle Scholar
  71. Goedert M., Spillantini M. G., Cairns N. J., and Crowther R. A. (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8, 159–168.PubMedCrossRefGoogle Scholar
  72. Gong C. X., Lidsky T., Wegiel J., Zuck L., Grundke-Iqbal I., and Iqbal K. (2000) Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer’s disease. J. Biol. Chem. 275, 5535–5544.PubMedCrossRefGoogle Scholar
  73. Gong C. X., Shaikh S., Wang J. Z., Zaidi T., Grundke-Iqbal I., and Iqbal K. (1995) Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer disease brain. J. Neurochem. 65, 732–738.PubMedCrossRefGoogle Scholar
  74. Gong C. X., Singh T. J., Grundke-Iqbal I., and Iqbal K. (1993) Phosphoprotein phosphatase activities in Alzheimer disease brain. J. Neurochem. 61, 921–927.PubMedCrossRefGoogle Scholar
  75. Goto S., Hirano A., and Rojas-Corona R. R. (1989a) An immunohistochemical investigation of the human neostriatum in Huntington’s disease. Ann.Neurol. 25, 298–304.PubMedCrossRefGoogle Scholar
  76. Goto S., Hirano A., and Matsumoto S. (1989b) Subdivisional involvement of nigrostriatal loop in idiopathic Parkinson’s disease and striatonigral degeneration. Ann. Neurol. 26, 766–770.PubMedCrossRefGoogle Scholar
  77. Goto S., Matsukado Y., Mihara Y., Inoue N., and Miyamoto E. (1986) The distribution of calcineurin in rat brain by light and electron microscopic immunohistochemistry and enzyme-immunoassay. Brain Res. 397, 161–172.PubMedCrossRefGoogle Scholar
  78. Grab D. J., Carlin R. K., and Siekevitz P. (1981) Function of a calmodulin in postsynaptic densities. II. Presence of a calmodulin-activatable protein kinase activity. J. Cell Biol. 89, 440–448.PubMedCrossRefGoogle Scholar
  79. Greengard P. (2001) The neurobiology of slow synaptic transmission. Science 294, 1024–1030.PubMedCrossRefGoogle Scholar
  80. Grundke-Iqbal I., Iqbal K., Tung Y. C., Quinlan M., Wisniewski H. M., and Binder L. I. (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 83, 4913–4917.PubMedCrossRefGoogle Scholar
  81. Guéette S. Y., Chen J., Jondro P. D., and Tanzi R. E. (1996) Association of a novel human FE65-like protein with the cytoplasmic domain of the beta-amyloid precursor protein. Proc. Natl. Acad. Sci. USA 93, 10832–10837.CrossRefGoogle Scholar
  82. Haass C., Hung A. Y., Schlossmacher M. G., Teplow D. B., and Selkoe D. J. (1993) β-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J. Biol. Chem. 268, 3021–3024.PubMedGoogle Scholar
  83. Haass C., Schlossmacher M. G., Hung A. Y., Vigo-Pelfrey C., Mellon A., Ostaszewski B. L., et al. (1992) Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325.PubMedCrossRefGoogle Scholar
  84. Hata R., Masumura M., Akatsu H., Li F., Fujita H., Nagai Y., Yamamoto T., Okada H., et al. (2001) Up-regulation of calcineurin Abeta mRNA in the Alzheimer’s disease brain: assessment by cDNA microarray. Biochem. Biophys. Res. Commun. 284, 310–316.PubMedCrossRefGoogle Scholar
  85. Hayashi H., Mizuno T., Michikawa M., Haass C., and Yanagisawa K. (2000) Amyloid precursor protein in unique cholesterol-rich microdomains different from caveolae-like domains. Biochim. Biophys. Acta 1483, 81–90.PubMedGoogle Scholar
  86. Helps N. R., Barker H. M., Elledge S. J., and Cohen P. T. (1995) Protein phosphatase 1 interacts with p53BP2, a protein which binds to the tumour suppressor p53. FEBS Lett. 377, 295–300.PubMedCrossRefGoogle Scholar
  87. Helps N. R., Luo X., Barker H. M., and Cohen P. T. (2000) NIMA-related kinase 2 (Nek2), a cell-cycle-regulated protein kinase localized to centrosomes, is complexed to protein phosphatase 1. Biochem. J. 349, 509–518.PubMedCrossRefGoogle Scholar
  88. Hemmings H. C., Jr., Greengard P., Tung H. Y., and Cohen P. (1984) DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 310, 503–505.PubMedCrossRefGoogle Scholar
  89. Homayouni R., Rice D. S., Sheldon M., and Curran T. (1999) Disabled-1 binds to the cytoplasmic domain of amyloid precursor-like protein 1. J. Neurosci. 19, 7507–7515.PubMedGoogle Scholar
  90. Humbert S., Bryson E. A., Cordelieres F. P., Connors N. C., Datta S. R., Finkbeiner S., et al. (2002) The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev. Cell 2, 831–837.PubMedCrossRefGoogle Scholar
  91. Huang F. L. and Glinsmann W. (1976) A second heat-stable protein inhibitor of phosphorylase phosphatase from rabbit muscle. FEBS Lett. 62, 326–329.PubMedCrossRefGoogle Scholar
  92. Hung A. Y. and Selkoe D. J. (1994) Selective ectodomain phosphorylation and regulated cleavage of β-amyloid precursor protein. EMBO J. 13, 534–542.PubMedGoogle Scholar
  93. Hung A. Y., Haass C., Nitsch R. M., Qiu W. Q., Citron M., Wurtman R. J., et al. (1993) Activation of protein kinase C inhibits cellular production of the amyloid β-protein. J. Biol. Chem. 268, 22959–22962.PubMedGoogle Scholar
  94. Iijima K. I., Ando K., Takeda S., Satoh Y., Seki T., Itohara S., et al. (2000) Neuron-specific phosphorylation of Alzheimer’s β-amyloid precursor protein by cyclindependent kinase 5. J. Neurochem. 75, 1085–1091.PubMedCrossRefGoogle Scholar
  95. Ikezu T., Trapp B. D., Song K. S., Schlegel A., Lisanti M. P., and Okamoto T. (1998) Caveolae, plasma membrane microdomains for alpha-secretase-mediated processing of the amyloid precursor protein. J. Biol. Chem. 273, 10485–10495.PubMedCrossRefGoogle Scholar
  96. Ingebritsen T. S. and Cohen P. (1983) Protein phosphatases: properties and role in cellular regulation. Science 221, 331–338.PubMedCrossRefGoogle Scholar
  97. Iqbal K., Alonso A. C., Gong C. X., Khatoon S., Pei J. J., Wang J. Z., and Grundke-Ikbal I. (1998) Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles. J. Neural. Transm. Suppl. 53, 169–180.PubMedGoogle Scholar
  98. Jacobsen J. S., Spruyt M. A., Brown A. M., Sahasrabudhe S. R., Blume A. J., Vitek M. P., et al. (1994) The release of Alzheimer’s disease beta amyloid peptide is reduced by phorbol treatment. J. Biol. Chem. 269, 8376–8382.PubMedGoogle Scholar
  99. Jin L. W. and Saitoh T. (1995) Changes in protein kinases in brain aging and Alzheimer’s disease. Implications for drug therapy. Drugs Aging 6, 136–149.PubMedGoogle Scholar
  100. Jones S. M. and Howell K. E. (1997) Phosphatidylinositol 3-kinase is required for the formation of constitutive transport vesicles from the TGN. J. Cell. Biol. 139, 339–349.PubMedCrossRefGoogle Scholar
  101. Kawabe T., Muslin A. J., and Korsmeyer S. J. (1997) HOX11 interacts with protein phosphatases PP2A and PP1 and disrupts a G2/M cell-cycle checkpoint. Nature 385, 454–458.PubMedCrossRefGoogle Scholar
  102. Kim C., Jang C. H., Bang J. H., Jung M. W., Joo I., Kim S. U., and Mook-Jung I. (2002) Amyloid precursor protein processing is separately regulated by protein kinase C and tyrosine kinase in human astrocytes. Neurosci. Lett. 324, 185–188.PubMedCrossRefGoogle Scholar
  103. Kim S. H., Nairn A. C., Cairns N., and Lubec G. (2001) Decreased levels of ARPP-19 and PKA in brains of Down syndrome and Alzheimer’s disease. J. Neural. Transm. Suppl. 61, 263–272.PubMedGoogle Scholar
  104. Kimberly W. T., Zheng J. B., Guenette S. Y., and Selkoe D. J. (2001) The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J. Biol. Chem. 276, 40288–40292.PubMedGoogle Scholar
  105. Kincaid R. L. and Coulson C. C. (1985) Rapid purification of calmodulin and S-100 protein by affinity chromatography with melittin immobilized to sepharose. Biochem. Biophys. Res. Commun. 133, 256–264.PubMedCrossRefGoogle Scholar
  106. Kinoshita A., Whelan C. M., Berezovska O., and Hyman B. T. (2002a) The gamma secretase-generated carboxyl-terminal domain of the amyloid precursor protein induces apoptosis via Tip60 in H4 cells. J. Biol. Chem. 277, 28530–28536.PubMedCrossRefGoogle Scholar
  107. Kinoshita A., Whelan C. M., Smith C. J., Berezovska O., and Hyman B. T. (2002b) Direct visualization of the gamma secretase-generated carboxyl-terminal domain of the amyloid precursor protein: association with Fe65 and translocation to the nucleus. J. Neurochem. 82, 839–847.PubMedCrossRefGoogle Scholar
  108. Koo E. H. and Squazzo S. L. (1994) Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J. Biol. Chem. 269, 17386–17389.PubMedGoogle Scholar
  109. Lai A., Sisodia S. S., and Trowbridge I. S. (1995) Characterization of sorting signals in the beta-amyloid precursor protein cytoplasmic domain. J. Biol. Chem. 270, 3565–3573.PubMedCrossRefGoogle Scholar
  110. Lanier L. M., Gates M. A., Witke W., Menzies A. S., Wehman A. M., Macklis J. D., et al. (1999) Mena is required for neurulation and commissure formation. Neuron 22, 313–325.PubMedCrossRefGoogle Scholar
  111. Lee R. K., Wurtman R. J., Cox A. J., and Nitsch R. M. (1995) Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 92, 8083–8087.PubMedCrossRefGoogle Scholar
  112. Liao H., Li Y., Brautigan D. L., and Gundersen G. G. (1998) Protein phosphatase 1 is targeted to microtubules by the microtubule-associated protein tau. J. Biol. Chem. 273, 21901–21908.PubMedCrossRefGoogle Scholar
  113. Liu Q. R., Zhang P. W., Lin Z., Li Q. F., Woods A. S., Troncoso J., and Uhl G. R. (2004) GBPI, A novel gastrointestinal-and brain-specific PP1 inhibitory protein activated by PKC and inactivated by PKA. Biochem. J. 377, 171–187.PubMedCrossRefGoogle Scholar
  114. Liu Q. R., Zhang P. W., Zhen Q., Walther D., Wang X. B., and Uhl G. R. (2002) KEPI, a PKC-dependent protein phosphatase 1 inhibitor regulated by morphine. J. Biol. Chem. 277, 13312–13320.PubMedCrossRefGoogle Scholar
  115. Maccioni R. B., Otth C., Concha I. I., and Munoz J. P. (2001) The protein kinase Cdk5. Structural aspects, roles in neurogenesis and involvement in Alzheimer’s pathology. Eur. J. Biochem. 268, 1518–1527.PubMedCrossRefGoogle Scholar
  116. MacMillan L. B., Bass M. A., Cheng N., Howard E. F., Tamura M., Strack S., et al. (1999) Brain actin-associated protein phosphatase 1 holoenzymes containing spinophilin, neurabin, and selected catalytic subunit isoforms. J. Biol. Chem. 274, 35845–35854.PubMedCrossRefGoogle Scholar
  117. Marambaud P., Ancolio K., Alves da Costa C., and Checler F. (1999) Effect of protein kinase A inhibitors on the production of Abeta40 and Abeta42 by human cells expressing normal and Alzheimer’s disease-linked mutated betaAPP and presenilin 1. Br. J. Pharmacol. 126, 1186–1190.PubMedCrossRefGoogle Scholar
  118. Marambaud P., Chevallier N., Barelli H., Wilk S., and Checler F. (1997a) Proteasome contributes to the alpha-secretase pathway of amyloid precursor protein in human cells. J. Neurochem. 68, 698–703.PubMedCrossRefGoogle Scholar
  119. Marambaud P., Lopez-Perez E., Wilk S., and Checler F. (1997b) Constitutive and protein kinase C-regulated secretory cleavage of Alzheimer’s beta-amyloid precursor protein: different control of early and late events by the proteasome. J. Neurochem. 69, 2500–2505.PubMedCrossRefGoogle Scholar
  120. Marambaud P., Wilk S., and Checler F. (1996) Protein kinase A phosphorylation of the proteasome: a contribution to the alpha-secretase pathway in human cells. J. Neurochem. 67, 2616–2619.PubMedCrossRefGoogle Scholar
  121. Masliah E., Mallory M., Alford M., Tanaka S., and Hansen L. A. (1998) Caspase dependent DNA fragmentation might be associated with excitotoxicity in Alzheimer disease. J. Neuropathol. Exp. Neurol. 57, 1041–1052.PubMedGoogle Scholar
  122. McKeith I. G., Ince P., Jaros E. B., Fairbairn A., Ballard C., Grace J., et al. (1998) What are the relations between Lewy body disease and AD? J. Neural Transm. Suppl. 54, 107–116.PubMedGoogle Scholar
  123. McLoughlin D. M., Irving N. G., Brownlees J., Brion J. P., Leroy K., and Miller C. C. (1999) Mint2/X11-like colocalizes with the Alzheimer’s disease amyloid precursor protein and is associated with neuritic plaques in Alzheimer’s disease. Eur. J. Neurosci. 11, 1988–1994.PubMedCrossRefGoogle Scholar
  124. Mills J. and Reiner P. B. (1996) Phorbol esters but not the cholinergic agonists oxotremorine-M and carbachol increase release of the amyloid precursor protein in cultured rat cortical neurons. J. Neurochem. 67, 1511–1518.PubMedCrossRefGoogle Scholar
  125. Mills J. and Reiner P. B. (1999) Regulation of amyloid precursor protein cleavage. J. Neurochem. 72, 443–460.PubMedCrossRefGoogle Scholar
  126. Mills J., Laurent Charest D., Lam F., Beyreuther K., Ida N., et al. (1997) Regulation of amyloid precursor protein catabolism involves the mitogen-activated protein kinase signal transduction pathway. J. Neurosci. 17, 9415–9422.PubMedGoogle Scholar
  127. Minopoli G., de Candia P., Bonetti A., Faraonio R., Zambrano N., and Russo T. (2001) The beta-amyloid precursor protein functions as a cytosolic anchoring site that prevents Fe65 nuclear translocation. J. Biol. Chem. 276, 6545–6550.PubMedCrossRefGoogle Scholar
  128. Moorhead G., Johnson D., Morrice N., and Cohen P (1998) The major myosin phosphatase in skeletal muscle is a complex between the beta-isoform of protein phosphatase 1 and the MYPT2 gene product. FEBS Lett. 438, 141–144.PubMedCrossRefGoogle Scholar
  129. Morrison J. H. and Hof P. R. (1997) Life and death of neurons in the aging brain. Science 278, 412–419.PubMedCrossRefGoogle Scholar
  130. Mueller H. T., Borg J. P., Margolis B., and Turner R. S. (2000) Modulation of amyloid precursor protein metabolism by X11alpha /Mint-1. A deletion analysis of protein-protein interaction domains. J. Biol. Chem. 275, 39302–39306.PubMedCrossRefGoogle Scholar
  131. Mumby M. C. and Walter G. (1993) Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol. Rev. 73, 673–699.PubMedGoogle Scholar
  132. Netzer W. J., Dou F., Cai D., Veach D., Jean S., Li Y., et al. (2003) Gleevec inhibits β-amyloid production but not Notch cleavage. Proc. Natl. Acad. Sci. USA 100, 12444–12449.PubMedCrossRefGoogle Scholar
  133. Nihei K. and Kowall N. W. (1992) Neurofilament and neural cell adhesion molecule immunocytochemistry of Huntington’s disease striatum. Ann. Neurol. 31, 59–63.PubMedCrossRefGoogle Scholar
  134. Nishimoto I., Okamoto T., Matsuura Y., Takahashi S., Okamoto T., Murayama Y., and Ogata E. (1993) Alzheimer amyloid protein precursor complexes with brain GTP-binding protein G(o). Nature 362, 75–79.PubMedCrossRefGoogle Scholar
  135. Nishiyama K., Trapp B. D., Ikezu T., Ransohoff R. M., Tomita T., Iwatsubo T., et al. (1999) Caveolin-3 upregulation activates beta-secretase-mediated cleavage of the amyloid precursor protein in Alzheimer’s disease. J. Neurosci. 19, 6538–6548.PubMedGoogle Scholar
  136. Nitsch R. M. and Growdon J. H. (1994) Role of neurotransmission in the regulation of amyloid β-protein precursor processing. Biochem. Pharmacol. 47, 1275–1284.PubMedCrossRefGoogle Scholar
  137. Nitsch R. M., Deng M., Growdon J. H., and Wurtman R. J. (1996) Serotonin 5-HT2a and 5-HT2c receptors stimulate amyloid precursor protein ectodomain secretion. J. Biol. Chem. 271, 4188–4194.PubMedCrossRefGoogle Scholar
  138. Nitsch R. M., Deng A., Wurtman R. J., and Growdon J. H. (1997) Metabotropic glutamate receptor subtype mGluR1alpha stimulates the secretion of the amyloid beta-protein precursor ectodomain. J. Neurochem. 69, 704–712.PubMedCrossRefGoogle Scholar
  139. Nitsch R. M., Slack B. E., Farber S. A., Borghesani P. R., Schulz J. G., Kim C., et al. (1993) Receptor-coupled amyloid precursor protein processing. Ann. NY Acad. Sci. 695, 122–127.PubMedCrossRefGoogle Scholar
  140. Nitsch R. M., Slack B. E., Wurtman R. J., and Growdon J. H. (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258, 304–307.PubMedCrossRefGoogle Scholar
  141. Ohsawa I., Takamura C., and Kohsaka S. (2001) Fibulin-1 binds the amino-terminal head of beta-amyloid precursor protein and modulates its physiological function. J. Neurochem. 76, 1411–1420.PubMedCrossRefGoogle Scholar
  142. Oishi M., Nairn A. C., Czernik A. J., Lim G. S., Isohara T., Gandy S. E., et al. (1997) The cytoplasmic domain of Alzheimer’s amyloid precursor protein is phosphorylated at Thr654, Ser655 and Thr668 in adult rat brain and cultured cells. Mol. Med. 3, 111–123.PubMedGoogle Scholar
  143. Okochi M., Walter J., Koyama A., Nakajo S., Baba M., Iwatsubo T., et al. (2000) Constitutive phosphorylation of the Parkinson’s disease associated alpha-synuclein. J. Biol. Chem. 275, 390–397.PubMedCrossRefGoogle Scholar
  144. Orci L., Palmer D. J., Ravazzola M., Perrelet A., Amherdt M., and Rothman J. E. (1993) Budding from Golgi membranes requires the coatomer complex of non-clathrin coat proteins. Nature 362, 648–652.PubMedCrossRefGoogle Scholar
  145. Ouimet C. C., da Cruze Silva E. F., and Greengard P. (1995) The alpha and gamma 1 isoforms of protein phosphatase 1 are highly and specifically concentrated in dendritic spines. Proc. Natl. Acad. Sci. USA 92, 3396–3400.PubMedCrossRefGoogle Scholar
  146. Pakaski M., Balaspiri L., Checler F., and Kasa P. (2002) Human amyloid-beta causes changes in the levels of endothelial protein kinase C and its alpha isoform in vitro. Neurochem. Int. 41, 409–414.PubMedCrossRefGoogle Scholar
  147. Patel K. G., Liu C., Cameron P. L., and Cameron R. S. (2001) Myr 8, a novel unconventional myosin expressed during brain development associates with the protein phosphatase catalytic subunits 1alpha and 1gamma1. J. Neurosci. 21, 7954–7968.PubMedGoogle Scholar
  148. Patrick G. N., Zukerberg L., Nikolic M., de la Monte S., Dikkes P., and Tsai L. H. (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622PubMedCrossRefGoogle Scholar
  149. Ramelot T. A. and Nicholson L. K. (2001) Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR. J. Mol. Biol. 307, 871–884.PubMedCrossRefGoogle Scholar
  150. Roncarati R., Sestan N., Scheinfeld M. H., Berechid B. E., Lopez P. A., Meucci O., et al. (2002) The gamma-secretase-generated intracellular domain of beta-amyloid precursor protein binds Numb and inhibits Notch signaling. Proc. Natl. Acad. Sci. USA 99, 7102–7107.PubMedCrossRefGoogle Scholar
  151. Sabo S. L., Ikin A. F., Buxbaum J. D., and Greengard P. (2001) The Alzheimer amyloid precursor protein (APP) and FE65, an APP-binding protein, regulate cell movement. J. Cell Biol. 153, 1403–1414.PubMedCrossRefGoogle Scholar
  152. Sabo S. L., Lanier L. M., Ikin A. F., Khorkova O., Sahasrabudhe S., Greengard P., and Buxbaum J. D. (1999) Regulation of beta-amyloid secretion by FE65, an amyloid protein precursor-binding protein. J. Biol. Chem. 274, 7952–7957.PubMedCrossRefGoogle Scholar
  153. Saitoh Y., Yamamoto H., Ushio Y., and Miyamoto E. (1989) Characterization of polyclonal antibodies to brain protein phosphatase 2A and immunohistochemical localization of the enzyme in rat brain. Brain Res. 489, 291–301.PubMedCrossRefGoogle Scholar
  154. Sastre M., Turner R. S., and Levy E. (1998) X11 interaction with beta-amyloid precursor protein modulates its cellular stabilization and reduces amyloid beta-protein secretion. J. Biol. Chem. 273, 22351–22357.PubMedCrossRefGoogle Scholar
  155. Savage M. J., Trusko S. P., Howland D. S., Pinsker L. R., Mistretta S., Reaume A. G., et al. (1998) Turnover of amyloid β-protein in mouse brain and acute reduction of its level by phorbol ester. J. Neurosci. 18, 1743–1752.PubMedGoogle Scholar
  156. Schillace R. V., Voltz J. W., Sim A. T., Shenolikar S., and Scott J. D. (2001) Multiple interactions within the AKAP220 signaling complex contribute to protein phosphatase 1 regulation. J. Biol. Chem. 276, 12128–12134.PubMedCrossRefGoogle Scholar
  157. Selkoe D. J., Yamazaki T., Citron M., Podlisny M. B., Koo E. H., Teplow D. B., and Haass C. (1996) The role of APP processing and trafficking pathways in the formation of amyloid β-protein. Ann. NY Acad. Sci. 777, 57–64.PubMedCrossRefGoogle Scholar
  158. Seubert P., Vigo-Pelfrey C., Esch F., Lee M., Dovey H., Davis D., et al. (1992) Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature 359, 325–327.PubMedCrossRefGoogle Scholar
  159. Sim A. T. (1991) The regulation and function of protein phosphatases in the brain. Mol. Neurobiol. 5, 229–246.PubMedCrossRefGoogle Scholar
  160. Skinner J. A. and Saltiel A. R. (2001) Cloning and identification of MYPT3: a prenylatable myosin targetting subunit of protein phosphatase 1. Biochem. J. 356, 257–267.PubMedCrossRefGoogle Scholar
  161. Slack B. E., Nitsch R. M., Livneh E., Kunz G. M. Jr., Breu J., Eldar H., and Wurtman R. J. (1993) Regulation by phorbol esters of amyloid precursor protein release from Swiss 3T3 fibroblasts overexpressing protein kinase C alpha. J. Biol. Chem. 268, 21097–21101.PubMedGoogle Scholar
  162. Standen C. L., Brownlees J., Grierson A. J., Kesavapany S., Lau K.-F., McLoughlin D. M., and Miller C. C. J. (2001) Phosphorylation of thr668 in the cytoplasmic domain of the Alzheimer’s disease amyloid precursor protein by stress-activated protein kinase 1b (Jun N-terminal kinase-3). J. Neurochem. 76, 316–320.PubMedCrossRefGoogle Scholar
  163. Suzuki T., Oishi M., Marshak D. R., Czernik A. J., Nairn A. C., and Greengard P. (1994) Cell cycle-dependent regulation of the phosphorylation and metabolism of the Alzheimer amyloid precursor protein. EMBO J. 13, 1114–1122.PubMedGoogle Scholar
  164. Takahashi M., Shibata H., Shimakawa M., Miyamoto M., Mukai H., and Ono Y. (1999) Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the Golgi apparatus. J. Biol. Chem. 274, 17267–17274.PubMedCrossRefGoogle Scholar
  165. Tallant E. A. and Cheung W. Y. (1983) Calmodulin-dependent protein phosphatase: a developmental study. Biochemistry 22, 3630–3635.PubMedCrossRefGoogle Scholar
  166. Tan I., Ng C. H., Lim L., and Leung T. (2001) Phosphorylation of a novel myosin binding subunit of protein phosphatase 1 reveals a conserved mechanism in the regulation of actin cytoskeleton. J. Biol. Chem. 276, 21209–21216.PubMedCrossRefGoogle Scholar
  167. Tan S., Maher P., and Schubert D. (1997) The role of protein phosphorylation in beta amyloid toxicity. Brain Res. 765, 159–163.PubMedCrossRefGoogle Scholar
  168. Tarr P. E., Contursi C., Roncarati R., Noviello C., Ghersi E., Scheinfeld M. H., Zambrano N., et al. (2002) Evidence for a role of the nerve growth factor receptor TrkA in tyrosine phosphorylation and processing of beta-APP. Biochem. Biophys. Res. Commun. 295, 324–329.PubMedCrossRefGoogle Scholar
  169. Terry R. D., Masliah E., Salmon D. P., Butters N., DeTeresa R., Hill R., et al. (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairments. Ann. Neurol. 30, 572–580.PubMedCrossRefGoogle Scholar
  170. Terry-Lorenzo R. T., Inoue M., Connor J. H., Haystead T. A., Armbruster B. N., Gupta R. P., et al. (2000) Neurofilament-L is a protein phosphatase-1-binding protein associated with neuronal plasma membrane and post-synaptic density. J. Biol. Chem. 275, 2439–2446.PubMedCrossRefGoogle Scholar
  171. Tomita S., Ozaki T., Taru H., Oguchi S., Takeda S., Yagi Y., et al. (1999) Interaction of a neuron-specific protein containing PDZ domains with Alzheimer’s amyloid precursor protein. J. Biol. Chem. 274, 2243–2254.PubMedCrossRefGoogle Scholar
  172. Ugi S., Imamura T., Ricketts W., and Olefsky J. M. (2002) Protein phosphatase 2A forms a molecular complex with Shc and regulates Shc tyrosine phosphorylation and downstream mitogenic signaling. Mol. Cell. Biol. 22, 2375–2387.PubMedCrossRefGoogle Scholar
  173. Vijayan S., El-Akkad E., Grundke-Iqbal I., and Iqbal K. (2001) A pool of beta-tubulin is hyperphosphorylated at serine residues in Alzheimer disease brain. FEBS Lett. 509, 375–381.PubMedCrossRefGoogle Scholar
  174. Vitolo O. V., Sant’Angelo A., Costanzo V., Battaglia F., Arancio O., and Shelanski M. (2002) Amyloid beta-peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc. Natl. Acad. Sci. USA 99, 13217–13221.PubMedCrossRefGoogle Scholar
  175. Waelkens E., Goris J., and Merlevede W. (1987) Characterization of the catalytic subunits of the different types of polycation-stimulated protein phosphatases. Biochem. Int. 15, 385–393.PubMedGoogle Scholar
  176. Wagey R. T. and Krieger C. (1998) Abnormalities of protein kinases in neurodegenerative diseases. Prog. Drug Res. 51, 133–183.PubMedGoogle Scholar
  177. Walter J., Capell A., Hung A. Y., Langen H., Schnolzer M., Thinakaran G., et al. (1997) Ectodomain phosphorylation of beta-amyloid precursor protein at two distinct cellular locations. J. Biol. Chem. 272, 1896–1903.PubMedCrossRefGoogle Scholar
  178. Walter J., Schindzielorz A., Hartung B., and Haass C. (2000) Phosphorylation of the beta-amyloid precursor protein at the cell surface by ectocasein kinases 1 and 2. J. Biol. Chem. 275, 23523–23529.PubMedCrossRefGoogle Scholar
  179. Wang J., Tung Y. C., Wang Y., Li X. T., Iqbal K., and Grundke-Iqbal I. (2001) Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett. 507, 81–87.PubMedCrossRefGoogle Scholar
  180. Watanabe T., Sukegawa J., Sukegawa I., Tomita S., Iijima K., Oguchi S., et al. (1999) A 127-kDa protein (UV-DDB) binds to the cytoplasmic domain of the Alzheimer’s amyloid precursor protein. J. Neurochem. 72, 549–556.PubMedCrossRefGoogle Scholar
  181. Westphal R. S., Tavalin S. J., Lin J. W., Alto N. M., Fraser I. D., Langeberg L. K., et al. (1999) Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science 285, 93–96.PubMedCrossRefGoogle Scholar
  182. Wurmser A. E., Gary J. D., and Emr S. D. (1999) Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways. J. Biol. Chem. 274, 9129–9132.PubMedCrossRefGoogle Scholar
  183. Xu H., Greengard P., and Gandy S. (1995) Regulated formation of Golgi secretory vesicles containing Alzheimer β-amyloid precursor protein. J. Biol. Chem. 270, 23243–23245.PubMedCrossRefGoogle Scholar
  184. Xu H., Sweeney D., Greengard P., and Gandy S. (1996) Metabolism of Alzheimer β-amyloid precursor protein: regulation by protein kinase A in intact cells and in a cell-free system. Proc. Natl. Acad. Sci. USA 93, 4081–4084.PubMedCrossRefGoogle Scholar
  185. Yamatsuji T., Matsui T., Okamoto T., Komatsuzaki K., Takeda S., Fukumoto H., et al. (1996) G protein-mediated neuronal DNA fragmentation induced by familial Alzheimer’s disease-associated mutants of APP. Science 272, 1349–1352.PubMedCrossRefGoogle Scholar
  186. Yoshida K., Watanabe M., Kato H., Dutta A., and Sugano S. (1999) BH-protocadherin-c, a member of the cadherin superfamily, interacts with protein phosphatase 1 alpha through its intracellular domain. FEBS Lett. 460, 93–98.PubMedCrossRefGoogle Scholar
  187. Yoshimura K., Takeuchi H., Sato O., Hidaka K., Doira N., Terunuma M., et al. (2001) Interaction of p130 with, and consequent inhibition of, the catalytic subunit of protein phosphatase 1 alpha. J. Biol. Chem. 276, 17908–17913.PubMedCrossRefGoogle Scholar
  188. Zachariou V., Benoit-Marand M., Allen P. B., Ingrassia P., Fienberg A. A., Gonon F., et al. (2002) Reduction of cocaine place preference in mice lacking the protein phosphatase 1 inhibitors DARPP 32 or Inhibitor 1. Biol. Psychiatry 51, 612–620.PubMedCrossRefGoogle Scholar
  189. Zambrano N., Bruni P., Minopoli G., Mosca R., Molino D., Russo C., et al. (2001) The beta-amyloid precursor protein APP is tyrosine-phosphorylated in cells expressing a constitutively active form of the Ab1 protoncogene. J. Biol. Chem. 276, 19787–19792.PubMedCrossRefGoogle Scholar
  190. Zhang J., Zhang L., Zhao S., and Lee E. Y. (1998) Identification and characterization of the human HCG V gene product as a novel inhibitor of protein phosphatase-1. Biochemistry 37, 16728–16734.PubMedCrossRefGoogle Scholar
  191. Zheng P., Eastman J., Vande Pol S., and Pimplikar S. W. (1998) PAT1, a microtubule-interacting protein, recognizes the basolateral sorting signal of amyloid precursor protein. Proc. Natl. Acad. Sci. USA 95, 14745–14750.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Odete A. B. da Cruz e Silva
    • 1
  • Margarida Fardilha
    • 1
  • Ana Gabriela Henriques
    • 1
  • Sandra Rebelo
    • 1
  • Sandra Vieira
    • 1
  • Edgar F. Da Cruz e Silva
    • 1
  1. 1.Centro de Biologia CelularUniversidade de AveiroAveiroPortugal

Personalised recommendations