Journal of Molecular Neuroscience

, Volume 23, Issue 1–2, pp 115–122 | Cite as

Tau protein phosphorylated at threonine 181 in CSF as a neurochemical biomarker in Alzheimer’s disease

Original data and review of the literature
  • Piotr Lewczuk
  • Hermann Esselmann
  • Mirko Bibl
  • Georg Beck
  • Juan Manuel Maler
  • Markus Otto
  • Johannes Kornhuber
  • Jens Wiltfang
Original Article

Abstract

Cerebrospinal fluid (CSF) concentrations of total Tau and Tau phosphorylated at threonine (position 181 [pTau181]) were studied with ELISA in a group of carefully selected patients with a neurochemically supported diagnosis of Alzheimer’s disease (AD, n=9; age range, 51–89 yr) and in a group of sex- and age-matched nondemented controls (n=9; age range, 52–81 yr). The concentration of both biomarkers is increased significantly in the AD group (total Tau, p<0.0008; pTau181, p<0.008). A significant correlation between CSF concentrations of both biomarkers is observed (R=0.897; p<0.001). Neither total Tau nor pTau181 correlates with age or degree of memory impairment, and only a tendency is observed between the concentrations of total Tau and Aβ42 in the CSF. Our results further confirm a possible role of pTau181 as a diagnostic tool in AD. The current literature regarding the physiological and pathological role of phosphorylated Tau proteins is reviewed, as well as the role of these proteins as promising biomarkers in the diagnosis of neurodegenerative disorders.

Index Entries

Alzheimer’s dementia cerebrospinal fluid Tau neurofibrillary tangles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreasen N., Minthon L., Davidsson P., Vanmechelen E., Vanderstichele H., Winblad B., and Blennow K. (2001) Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Arch. Neurol. 58, 373–379.PubMedCrossRefGoogle Scholar
  2. Arai H., Ishiguro K., Ohno H., Moriyama M., Itoh N., Okamura N., et al. (2000) CSF phosphorylated tau protein and mild cognitive impairment: a prospective study. Exp. Neurol. 166, 201–203.PubMedCrossRefGoogle Scholar
  3. Arriagada P. V., Growdon J. H., Hedley-Whyte E. T., and Hyman B. T. (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42, 631–639.PubMedGoogle Scholar
  4. Augustinack J. C., Schneider A., Mandelkow E. M., and Hyman B. T. (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol. (Berl.) 103, 26–35.CrossRefGoogle Scholar
  5. Baas P. W., Pienkowski T. P., and Kosik K. S. (1991) Processes induced by tau expression in Sf9 cells have an axon-like microtubule organization. J. Cell Biol. 115, 1333–1344.PubMedCrossRefGoogle Scholar
  6. Blennow K., Vanmechelen E., and Hampel H. (2001) CSF total tau, Abeta42 and phosphorylated tau protein as biomarkers for Alzheimer’s disease. Mol. Neurobiol. 24, 87–97.PubMedCrossRefGoogle Scholar
  7. Braak H. and Braak E. (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. (Berl.) 82, 239–259.CrossRefGoogle Scholar
  8. Buee L., Bussiere T., Buee-Scherrer V., Delacourte A., and Hof P. R. (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Brain Res. Rev. 33, 95–130.PubMedCrossRefGoogle Scholar
  9. Buerger K., Zinkowski R., Teipel S. J., Tapiola T., Arai H., Blennow K., et al. (2002) Differential diagnosis of Alzheimer disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231. Arch. Neurol. 59, 1267–1272.PubMedCrossRefGoogle Scholar
  10. Consensus Report (1998) Consensus Report of the Working Group on Molecular and Biochemical Markers of Alzheimer’s Disease. The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working Group. Neurobiol. Aging 19, 109–116.CrossRefGoogle Scholar
  11. Dawson H. N., Ferreira A., Eyster M. V., Ghoshal N., Binder L. I., and Vitek M. P. (2001) Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J. Cell Sci. 114, 1179–1187.PubMedGoogle Scholar
  12. Drewes G., Trinczek B., Illenberger S., Biernat J., Schmitt-Ulms G., Meyer H. E., et al. (1995) Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J. Biol. Chem. 270, 7679–7688.PubMedCrossRefGoogle Scholar
  13. Folstein M. F., Folstein S. E., and McHugh P. R. (1975) “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198.PubMedCrossRefGoogle Scholar
  14. Galasko D., Chang L., Motter R., Clark C. M., Kaye J., Knopman D., et al. (1998) High cerebrospinal fluid tau and low amyloid beta42 levels in the clinical diagnosis of Alzheimer disease and relation to apolipoprotein E genotype. Arch. Neurol. 55, 937–945.PubMedCrossRefGoogle Scholar
  15. Grundke-Iqbal I., Iqbal K., Tung Y. C., Quinlan M., Wisniewski H. M., and Binder L. I. (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 83, 4913–4917.PubMedCrossRefGoogle Scholar
  16. Hampel H., Buerger K., Kohnken R., Teipel S. J., Zinkowski R., Moeller H. J., et al. (2001) Tracking of Alzheimer’s disease progression with cerebrospinal fluid tau protein phosphorylated at threonine 231. Ann. Neurol. 49, 545–546.PubMedCrossRefGoogle Scholar
  17. Hampel H., Buerger K., Zinkowski R., Teipel S. J., Goernitz A., Andreasen J., et al. (2004) Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch. Gen. Psychiatry. 61, 95–102.PubMedCrossRefGoogle Scholar
  18. Harada A., Oguchi K., Okabe S., Kuno J., Terada S., Ohshima T., et al. (1994) Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369, 488–491.PubMedCrossRefGoogle Scholar
  19. Hesse C., Rosengren L., Andreasen N., Davidsson P., Vanderstichele H., Vanmechelen E., and Blennow K. (2001) Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci. Lett. 297, 187–190.PubMedCrossRefGoogle Scholar
  20. Hulstaert F., Blennow K., Ivanoiu A., Schoonderwaldt H. C., Riemenschneider M., De Deyn P. P., et al. (1999) Improved discrimination of AD patients using beta-amyloid(1–42) and tau levels in CSF. Neurology 52, 1555–1562.PubMedGoogle Scholar
  21. Iqbal K., Alonso Adel C., El-Akkad E., Gong C. X., Haque N., Khatoon S., et al. (2002) Significance and mechanism of Alzheimer neurofibrillary degeneration and therapeutic targets to inhibit this lesion. J. Mol. Neurosci. 19, 95–99.PubMedCrossRefGoogle Scholar
  22. Itoh N., Arai H., Urakami K., Ishiguro K., Ohno H., Hampel H., et al. (2001) Large-scale, multicenter study of cerebrospinal fluid tau protein phosphorylated at serine 199 for the antemortem diagnosis of Alzheimer’s disease. Ann. Neurol. 50, 150–156.PubMedCrossRefGoogle Scholar
  23. Knops J., Kosik K. S., Lee G., Pardee J. D., Cohen-Gould L., and McConlogue L. (1991) Overexpression of tau in a nonneuronal cell induces long cellular processes. J. Cell Biol. 114, 725–733.PubMedCrossRefGoogle Scholar
  24. Kohnken R., Buerger K., Zinkowski R., Miller C., Kerkman D., DeBernardis J., et al. (2000) Detection of tau phosphorylated at threonine 231 in cerebrospinal fluid of Alzheimer’s disease patients. Neurosci. Lett. 287, 187–190.PubMedCrossRefGoogle Scholar
  25. Lewczuk P., Esselmann H., Meyer M., Wollscheid V., Neumann M., Otto M., et al. (2003) The amyloid-beta (Abeta) peptide pattern in cerebrospinal fluid (CSF) in Alzheimer’s disease: evidence of a novel carboxyterminally elongated Abeta peptide. Rapid Commun. Mass Spectrom. 17, 129–196.CrossRefGoogle Scholar
  26. Maurer K., Volk S., and Gerbaldo H. (1997) Auguste D and Alzheimer’s disease. Lancet 349, 1546–1549.PubMedCrossRefGoogle Scholar
  27. Mawal-Dewan M., Henley J., Van de Voorde A., Trojanowski J. Q., and Lee V. M. (1994) The phosphorylation state of tau in the developing rat brain is regulated by phosphoprotein phosphatases. J. Biol. Chem. 269, 30981–30987.PubMedGoogle Scholar
  28. McKhann G., Drachman D., Folstein M., Katzman R., Price D., and Stadlan E. M. (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34, 939–944.PubMedGoogle Scholar
  29. Nagga K., Gottfries J., Blennow K., and Marcusson J. (2002) Cerebrospinal fluid phospho-Tau, total Tau and beta-amyloid(1–42) in the differentiation between Alzheimer’s disease and vascular dementia. Dement Geriatr. Cogn. Disord. 14, 183–190.PubMedCrossRefGoogle Scholar
  30. Otto M., Wiltfang J., Tumani H., Zerr I., Lantsch M., Kornhuber J., et al. (1997) Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Neurosci. Lett. 225, 210–212.PubMedCrossRefGoogle Scholar
  31. Papassotiropoulos A., Streffer J. R., Tsolaki M., Schmid S., Thal D., Nicosia F., et al. (2003) Increased brain beta-amyloid load, phosphorylated Tau, and risk of Alzheimer disease associated with an intronic CYP46 polymorphism. Arch. Neurol. 60, 29–35.PubMedCrossRefGoogle Scholar
  32. Parnetti L., Lanari A., Amici S., Gallai V., Vanmechelen E., and Hulstaert F. (2001) CSF phosphorylated tau is a possible marker for discriminating Alzheimer’s disease from dementia with Lewy bodies. Phospho-Tau International Study Group. Neurol. Sci. 22, 77–78.PubMedCrossRefGoogle Scholar
  33. Reiber H. and Peter J. B. (2001) Cerebrospinal fluid analysis: disease related data patterns and evaluation programs. J. Neurol. Sci. 184, 101–122.PubMedCrossRefGoogle Scholar
  34. Riemenschneider M., Schmolke M., Lautenschlager N., Guder W. G., Vanderstichele H., Vanmechelen E., and Kurz A. (2000) Cerebrospinal beta-amyloid (1–42) in early Alzheimer’s disease: association with apolipoprotein E genotype and cognitive decline. Neurosci. Lett. 284, 85–88.PubMedCrossRefGoogle Scholar
  35. Rosner H., Rebhan M., Vacun G., and Vanmechelen E. (1995) Developmental expression of tau proteins in the chicken and rat brain: rapid down-regulation of a paired helical filament epitope in the rat cerebral cortex coincides with the transition from immature to adult tau isoforms. Int. J. Dev. Neurosci. 13, 607–617.PubMedCrossRefGoogle Scholar
  36. Shahani N. and Brandt R. (2002) Functions and malfunctions of the tau proteins. Cell. Mol. Life Sci. 59, 1668–1680.PubMedCrossRefGoogle Scholar
  37. Stamer K., Vogel R., Thies E., Mandelkow E., and Mandelkow E. M. (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol. 156, 1051–1063.PubMedCrossRefGoogle Scholar
  38. Takei Y., Teng J., Harada A., and Hirokawa N. (2000) Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J. Cell Biol. 150, 989–1000.PubMedCrossRefGoogle Scholar
  39. Trojanowski J. Q. and Lee V. M. (1995) Phosphorylation of paired helical filament tau in Alzheimer’s disease neurofibrillary lesions: focusing on phosphatases. FASEB J. 9, 1570–1576.PubMedGoogle Scholar
  40. Vanmechelen E., Vanderstichele H., Davidsson P., Van Kerschaver E., Van Der Perre B., Sjogren M., et al. (2000) Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci. Lett. 285, 49–52.PubMedCrossRefGoogle Scholar
  41. Vanmechelen E., Vanderstichele H., Hulstaert F., Andreasen N., Minthon L., Winblad B., et al. (2001a) Cerebrospinal fluid tau and beta-amyloid(1–42) in dementia disorders. Mech. Ageing Dev. 122, 2005–2011.PubMedCrossRefGoogle Scholar
  42. Vanmechelen E., Van Kerschaver E., Blennow K., De Deyn P. P., Gartner F. H., Parnetti L., et al. (2001b) CSF-Phospho-tau (181P) as a promising marker for discriminating Alzheimer’s disease from dementia with Lewy bodies, in Alzheimer’s Disease: Advances in Etiology, Pathogenesis and Therapeutics, Iqbal, K., Sisodia, S. S., and Winblad, B., eds., John Wiley and Sons Ltd., Chichester, UK, pp. 285–291.Google Scholar
  43. Wiltfang J., Esselmann H., Bibl M., Smirnov A., Otto M., Paul S., et al. (2002) Highly conserved and disease-specific patterns of carboxyterminally truncated A beta peptides 1–37/38/39 in addition to 1–40/42 in Alzheimer’s disease and in patients with chronic neuroinflammation. J. Neurochem. 81, 481–496.PubMedCrossRefGoogle Scholar
  44. Wiltfang J., Esselmann H., Cupers P., Neumann M., Kretzschmar H., Beyermann M., et al. (2001) Elevation of beta-amyloid peptide 2–42 in sporadic and familial Alzheimer’s disease and its generation in PS1 knockout cells. J. Biol. Chem. 276, 42645–42657.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Piotr Lewczuk
    • 1
  • Hermann Esselmann
    • 2
  • Mirko Bibl
    • 2
  • Georg Beck
    • 1
  • Juan Manuel Maler
    • 1
  • Markus Otto
    • 2
  • Johannes Kornhuber
    • 1
  • Jens Wiltfang
    • 1
  1. 1.Department of Psychiatry and PsychotherapyUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Department of PsychiatryUniversity of GoettingenGoettingenGermany

Personalised recommendations