Journal of Molecular Neuroscience

, Volume 22, Issue 3, pp 231–235

β-Amyloid-activated cell cycle in SH-SY5Y neuroblastoma cells

Correlation with the MAP kinase pathway
  • Giuseppina Frasca
  • Santina Chiechio
  • Carlo Vancheri
  • Ferdinando Nicoletti
  • Agata Copani
  • Maria Angela Sortino
Original Article

Abstract

Primary cultures of rat cortical neurons exposed to toxic concentrations of β-amyloid peptide (βAP) begin an unscheduled mitotic cell cycle that does not progress beyond the S phase. To analyze possible signal transduction pathways involved in this effect, the action of βAP has been studied in SH-SY5Y neuroblastoma cells differentiated by a 7-d exposure to 10 µM retinoic acid. Treatment with the βAP fragment, βAP(25–35), (25 µM) for 24, 48, or 72 h caused apoptotic cell death, detected by flow cytometry as a prediploid cell population. Cell cycle analysis showed that βAP(25–35) modified cell cycle profiles by markedly increasing the number of cells in the S phase and reducing the population of the G2/M area. These effects seem to involve activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK1/2). Inhibition of this pathway by the specific inhibitor PD98059 (2 µM) completely prevented changes of cell cycle distribution induced by βAP and significantly reduced neuronal death. The data suggest that MAPK cascade can mediate the induction of cell cycle induced by βAP, thus contributing to the toxicity of the peptide.

Index Entries

Cell cycle apoptosis cyclin Alzheimer’s disease mitosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe K. and Saito H. (2000) Amyloid beta neurotoxicity not mediated by the mitogen-activated protein kinase cascade in cultured rat hippocampal and cortical neurons. Neurosci. Lett. 292, 1–4.PubMedCrossRefGoogle Scholar
  2. Assoian R. K. and Schwartz M. A. (2001) Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression. Curr. Opin. Genet. Dev. 11, 48–53.PubMedCrossRefGoogle Scholar
  3. Bottazzi M. E., Zhu X., Bohmer R. M., and Assoian R. K. (1999) Regulation of p21 (cip1) expression by growth factors and the extracellular matrix reveals a role for transient ERK activity in G1 phase. J. Cell Biol. 146, 1255–1264.PubMedCrossRefGoogle Scholar
  4. Copani A., Condorelli F., Caruso A., Vancheri C., Sala A., Giuffrida Stella A. M., et al. (1999) Mitotic signaling by beta-amyloid causes neuronal death. FASEB J. 13, 2225–2234.PubMedGoogle Scholar
  5. Copani A., Melchiorri D., Caricasole A., Martini F., Sale P., Carnevale R., et al. (2002) β-Amyloid-induced synthesis of the ganglioside GD3 is a requisite for cell cycle reactivation and apoptosis in neurons. J. Neurosci. 22, 3963–3968.PubMedGoogle Scholar
  6. Ekinci F. J., Malik K. U., and Shea T. B. (1999) Activation of the L voltage-sensitive calcium channel by mitogen-activated protein (MAP) kinase following exposure of neuronal cells to beta-amyloid. MAP kinase mediates beta-amyloid-induced neurodegeneration. J. Biol. Chem. 274, 30322–30327.PubMedCrossRefGoogle Scholar
  7. Giovanni A., Wirtz-Brugger F., Keramaris E., Slack R., and Park D. S. (1999) Involvement of cell cycle elements, cyclin-dependent kinases, pRb, and E2F × DP, in β-amyloid-induced neuronal death. J. Biol. Chem. 274, 19011–19016.PubMedCrossRefGoogle Scholar
  8. Husseman J. W., Nochlin D., and Vincent I. (2000) Mitotic activation: a convergent mechanism for a cohort of neurodegenerative disease. Neurobiol. Aging 21, 815–828.PubMedCrossRefGoogle Scholar
  9. Li Y. P., Bushnell A. F., Lee C. M., Perlmutter L. S., and Wong S. K. (1996) Beta-amyloid induces apoptosis in human-derived neurotypic SH-SY5Y cells. Brain Res. 738, 196–204.PubMedCrossRefGoogle Scholar
  10. McShea A., Wahl A. F., and Smith M. A. (1999) Re-entry into the cell cycle: a mechanism for neurodegeneration in Alzheimer disease. Med Hypotheses 52, 525–527.PubMedCrossRefGoogle Scholar
  11. Perry G., Roder H., Nunomura A., Takeda A., Friedlich A. L., Zhu X., et al. (1999) Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation. NeuroReport 10, 2411–2415.PubMedCrossRefGoogle Scholar
  12. Rapoport M. and Ferreira A. (2000) PD98059 prevents neurite degeneration induced by fibrillar beta-amyloid in mature hippocampal neurons. J. Neurochem. 74, 125–133.PubMedCrossRefGoogle Scholar
  13. Roberts E. C., Shapiro P. S., Nahreini T. S., Pages G., Pouyssegur J., and Ahn N. G. (2002) Distinct cell cycle timing requirements for extracellular signal-regulated kinase and phosphoinositide 3-kinase signaling pathways in somatic cell mitosis. Mol. Cell. Biol. 22, 7226–7241.PubMedCrossRefGoogle Scholar
  14. Wei W., Wang X., and Kusiak J. W. (2002) Signaling events in amyloid beta-peptide-induced neuronal death and insulin-like growth factor I protection. J. Biol. Chem. 277, 17649–17656.PubMedCrossRefGoogle Scholar
  15. Wilkinson M. G. and Millar J. B. (2000) Control of the eukaryotic cell cycle by MAP kinase signaling pathways. FASEB J. 14, 2147–2157.PubMedCrossRefGoogle Scholar
  16. Wright J., Munar E., Jameson D. R., Andreassen D. R., Margolis R. L., Seger R., and Krebs E. G. (1999) Mitogen activated protein kinase kinase activity is required for the G2/M transition of the cell cycle in mammalian fibroblasts. Proc. Natl. Acad. Sci. USA 96, 11335–11340.PubMedCrossRefGoogle Scholar
  17. Zhu X., Castellani R. J., Takeda A., Nunomura A., Atwood C. S., Perry G., and Smith M. A. (2001) Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the two hit hypothesis. Mech. Ageing Dev. 123, 39–46.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Giuseppina Frasca
    • 1
  • Santina Chiechio
    • 2
    • 1
  • Carlo Vancheri
    • 3
    • 1
  • Ferdinando Nicoletti
    • 3
    • 1
  • Agata Copani
    • 2
    • 1
  • Maria Angela Sortino
    • 4
    • 1
  1. 1.Department of Experimental and Clinical PharmacologyUniversity of CataniaCataniaItaly
  2. 2.Department of Pharmaceutical SciencesUniversity of CataniaCataniaItaly
  3. 3.Department of Internal and Specialistic MedicineUniversity of CataniaCataniaItaly
  4. 4.Department of Human Physiology and PharmacologyUniversity of Rome “La Sapienza”RomeItaly

Personalised recommendations