Journal of Molecular Neuroscience

, Volume 22, Issue 1–2, pp 51–62 | Cite as

Kalirin expression is regulated by multiple promoters

  • Clifton E. McPherson
  • Betty A. Eipper
  • Richard E. Mains
Peptide Secretion


Kalirin is a multidomain guanine nucleotide exchange factor for small GTP binding proteins of the Rho family. It is expressed in multiple isoforms that contain different combinations of functional domains and display a complex pattern of expression during brain development. In addition to the isoforms generated through alternative splicing, we have identified multiple transcriptional start sites in rats and humans. These multiple transcriptional start sites result in full-length Kalirin transcripts possessing different 5′ ends encoding proteins with differing amino termini. These alternative first exons display different patterns of expression in developing rats and humans and in cultured cells. Most of these alternate first exons lie >100 kb upstream of exon 2 in both rats and humans. Comparisons of the rat and human Kalirin promoter regions reveal numerous shared potential regulatory elements.

Index Entries

Kalirin SH-SY5Y Trio multiple promoters retinoic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alam, M. R., Johnson, R. C., Darlington, D. N., Hand, T. A., Mains, R. E., and Eippe, B. A. (1997) Kalirin, a cytosolic protein with Spectrin-like and GDP/GTP exchange factor-like domains that interacts with Peptidylglycine α-amidating Monooxygenase, an integral membrane peptide-processing enzyme. J. Biol. Chem. 272, 12667–12675.PubMedCrossRefGoogle Scholar
  2. Amalfitano, A., Rafael, J. A., and Chamberlain, J. S. (1997) Structure and mutation of the dystrophin gene, in Dystrophin: Gene, Protein, and Cell Biology, Cambridge University Press, Cambridge, U.K., pp. 1–26.Google Scholar
  3. Aparicio, S., Chapman, J., Stupka, E., et al. (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297, 1301–1310.PubMedCrossRefGoogle Scholar
  4. Awasaki, T., Saito, M., Sone, M., et al. (2000) The Drosophila Trio plays an essential role in patterning of axons by regulating their directional extension. Neuron 26, 119–131.PubMedCrossRefGoogle Scholar
  5. Bailey, T. M. and Elkan, C. (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers, in Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, AAAI, Menlo Park, CA, pp. 28–36.Google Scholar
  6. Bateman, J. and Van Vactor, D. (2001) The Trio family of guanine-nucleotide-exchange factors: regulators of axon guidance. J. Cell. Sci. 114, 1973–1980.PubMedGoogle Scholar
  7. Bateman, J., Shu, H., and Van Vactor, D. (2000) The guanine nucleotide exchange factor Trio mediates axonal development in the Drosophila embryo. Neuron 26, 93–106.PubMedCrossRefGoogle Scholar
  8. Benachenhou, N., Massy, I., and Vacher, J. (2002) Characterization and expression analyses of the mouse Wiskott-Aldrich syndrome protein (WASP) family member Wave1/Scar. Gene 290, 131–140.PubMedCrossRefGoogle Scholar
  9. Colomer, V., Engeleander, S., Sharp, A. H., et al. (1997) Huntingtin-associated protein 1 (HAP1) binds to a Triolike polypeptide, with a rac1 guanine nucleotide exchange factor domain. Hum. Mol. Genet. 6, 1519–1525.PubMedCrossRefGoogle Scholar
  10. Debant, A., Serra-Pages, C., Seipel, K., et al. (1996) The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factors. Proc. Natl. Acad. Sci. USA 93, 5466–5471.PubMedCrossRefGoogle Scholar
  11. Gorecki, D. C., Monaco, A. P., Derry, J. M. J., Walker, A. P., Barnard, E. A., and Barnard, P. J. (1992) Expression of four alternative dystrophin transcripts in brain regions regulated by different promoters. Hum. Mol. Genet. 1, 505–510.PubMedCrossRefGoogle Scholar
  12. Johnson, R. C., Penzes, P., Eipper, B. A., and Mains, R. E. (2000) Isoforms of Kalirin, a neuronal Db1 family member, generated through the use of different 5′- and 3′-ends along with an internal translational initiation site. J. Biol. Chem. 275, 19324–19333.PubMedCrossRefGoogle Scholar
  13. Lagutin, O. V., Zhu, C. C., Kobayashi, D., et al. (2003) Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev. 17, 368–379.PubMedCrossRefGoogle Scholar
  14. Lau, F., Aldabe, R., Friedrich, V., Ohnishi, S., Yoshida, T., and Ramirez, F. (2001) Developmental expression of mouse Kruppel-like transcription factor KLF7 suggests a potential role in neurogenesis. Dev. Biol. 233, 305–318.CrossRefGoogle Scholar
  15. Lei, L., Ma, L., Nef, S., Thai, T., and Parada, L. F. (2001) MK1f7, a potential transcriptional regulator of TrkA nerve growth factor receptor expression in sensory and sympathetic neurons. Development 128, 1147–1158.PubMedGoogle Scholar
  16. Liebl, E. C., Forsthoefel, D. J., Franco L. S., et al. (2000) Dosage-sensitive, reciprocal genetic interactions between the Abl tyrosine kinase and the putative GEF trio reveal trio’s role in axon pathfinding. Neuron 26, 107–118.PubMedCrossRefGoogle Scholar
  17. Luu, L., Ramshaw, H., Tahayato, A., Stuart, A., Jones, G., White, J., and Petkovich, M. (2001) Regulation of retinoic acid metabolism. Adv. Enzyme Regul. 41, 159–175.PubMedCrossRefGoogle Scholar
  18. Ma, X.-M., Johnson, R. C., Mains, R. E., and Eipper, B. A. (2001) Expression of Kalirin, a neuronal GDP/GTP exchange factor of the Trio family, in the central nervous system of the adult rat. J. Comp. Neurol. 429, 388–402.PubMedCrossRefGoogle Scholar
  19. Ma, X.-M., Mains, R. E., and Eipper, B. A. (2002) Plasticity in hippocampal peptidergic systems induced by repeated electroconvulsive shock. Neuropsychopharmacology 27, 55–71.PubMedCrossRefGoogle Scholar
  20. Maekawa, M., Ishikazi, T., Boku, S., et al. (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895–898.PubMedCrossRefGoogle Scholar
  21. May, V., Schiller, M. R., Eipper, B. A., and Mains, R. E. (2002) Kalirin Dbl-homology guanine nucleotide exchange factor 1 domain initiates new axon outgrowths via RhoG-mediated mechanisms. J. Neurosci. 22, 6980–6990.PubMedGoogle Scholar
  22. McPherson, C. E., Eipper, E. A., and Mains, R. E. (2002) Genomic organization and differential expression of Kalirin isoforms. Gene 284, 41–51.PubMedCrossRefGoogle Scholar
  23. Nomoto, S., Tatematsu, Y., Takahashi, T., and Osada, H. (1999) Cloning and characterization of the alternative promoter regions of the human LIMK2 gene responsible for alternative transcripts with tissue-specific expression. Gene 236, 259–271.PubMedCrossRefGoogle Scholar
  24. Pahlman, S., Hoehner, J. C., Nanberg, E., et al. (1995) Differentiation and survival influences of growth factors in human neuroblastoma. Eur. J. Cancer 31A, 453–458.PubMedCrossRefGoogle Scholar
  25. Pahlman, S., Mamaeva, S., Meyerson, G., et al. (1990) Human neuroblastoma cells in culture: a model for neuronal cell differentiation and function. Acta Physiol. Scand. Suppl. 592, 25–37.PubMedGoogle Scholar
  26. Pozzoli, U., Elgar, G., Cagliani, R., et al. (2003) Comparative analysis of vertebrate dystrophin loci indicate intron gigantism as a common feature. Genome Res. 13, 764–772.PubMedCrossRefGoogle Scholar
  27. Seipel, K., Medle, Q. G., Kedersha, N. L., et al. (1999) Trio amino-terminal guanine nucleotide exchange factor domain expression promotes actin cytoskeleton reorganization, cell migration, and anchorage-dependent cell growth. J. Cell Sci. 112, 1825–1834.PubMedGoogle Scholar
  28. Smale, S. T. (1994) Core promoter architecture for eukaryotic protein-coding genes, in Transcription: Mechanisms and Regulation, Conaway, R. C., and Conaway, J. W., eds., Raven, New York, pp. 63–81.Google Scholar
  29. Steven, R., Kubiseski, T. J., Zheng, H., et al. (1998) UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 92, 785–795.PubMedCrossRefGoogle Scholar
  30. Tatusova, T. A. and Madden, T. L. (1999) Blast 2 sequences—a new tool for comparing protein and nucleotide sequences. FEMS Microbiol. Lett. 174, 247–250.PubMedCrossRefGoogle Scholar
  31. Van Der Burg, B., Sonneveld, E., Lemmen, J. G., and Van Der Saag, P. T. (1999) Morphogenetic action of retinoids and estrogens. Int. J. Dev. Biol. 43, 735–743.PubMedGoogle Scholar
  32. Zhu, C. C., Dyer, M. A., Uchikawa, M., Kondoh, H., Lagutin, O. V., and Oliver, G. (2002) Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors. Development 129, 2835–2849.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Clifton E. McPherson
    • 1
  • Betty A. Eipper
    • 1
  • Richard E. Mains
    • 1
  1. 1.Department of NeuroscienceUniversity of Connecticut Health CenterFarmington

Personalised recommendations