Advertisement

Journal of Molecular Neuroscience

, Volume 20, Issue 1, pp 61–71 | Cite as

Poly(ADP-ribose) polymerase during reperfusion after transient forebrain ischemia

Its role in brain edema and cell death
  • Robert P. StrosznajderEmail author
  • Roman Gadamski
  • Grzegorz A. Czapski
  • Henryk Jesko
  • Joanna B. Strosznajder
Original Articles

Abstract

The activation of poly(ADP-ribose) polymerase (PARP) in the reperfused brain after ischemia has been assumed but never has been directly presented. Our studies indicate a different dynamic of PARP activity alteration in hippocampus during reperfusion after 3 and 10 min of transient forebrain ischemia in gerbils. The phasic stimulation of PARP activity was observed during reperfusion 15 min, 120 min, and 4 d after 3 min of ischemia with subsequent lowering of its activity close to control value on the seventh day of reperfusion. After 10 min of ischemic insult, PARP activity significantly increased from the third to the seventh day of reperfusion. The protein level of PARP was not significantly changed during reperfusion after 3 and 10 min of ischemia, with one exception: On the third day after 10 min of ischemia, PARP protein level was 28% lower compared to control; however, no enhancement of 85-kDa protein immunoreactivity was observed. These data indicate the lack of PARP cleavage in hippocampus of gerbils subjected to ischemia-reperfusion injury. The inhibitor of PARP, 3-aminobenzamide (3-AB) in a dose of 30 mg/kg b.w. (body weight) injected intravenously directly after 3 min of ischemia protects >60% of neuronal cells against death in the CA1 layer of hippocampus but has no effect after 10 min of ischemic episode. 3-AB decreased forebrain edema significantly after 3 and 10 min of ischemia. Our data indicate that PARP inhibitor(s) might offer a potent therapeutic strategy for short global ischemia. The combination of PARP inhibitor with potent antioxidant might enhance its ameliorating effect.

Index Entries

Brain ischemia poly(ADP-ribose) polymerase 3-aminobenzamide neuroprotection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckman J. S. and Crow J. P. (1993) Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem. Soc. Trans. 21, 330–334.PubMedGoogle Scholar
  2. Chalimoniuk M. and Strosznajder J. (1998) NMDA receptor-dependent nitric oxide and cGMP synthesis in brain hemispheres and cerebellum during reperfusion after transient forebrain ischemia in gerbils: effect of 7-nitroindazole J. Neurosci. Res. 54, 681–690.PubMedCrossRefGoogle Scholar
  3. Colbourne F., Sutherland G. R., and Auer R. N. (1999) Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J. Neurosci. 19, 4200–4210.PubMedGoogle Scholar
  4. Dawson V. L., Dawson T. M., London E. D., Bredt D. S., and Synder S. H. (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA 88, 6368–6371.PubMedCrossRefGoogle Scholar
  5. Eliasson M. J. L., Sampei K., Mandir A. S., Hurn P. D., Traystman R. J., Bao J., et al. (1997) Poly (ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat. Med. 3(10), 1089–1095.PubMedCrossRefGoogle Scholar
  6. Endres M., Scott G., Namura S., Salzman A. L., Huang P. L., Moskowitz M. A., and Szabo C. (1998) Role of peroxynitrite and neuronal nitric oxide synthase in the activation of poly (ADP-ribose) synthetase in a murine model of cerebral ischemia-reperfusion. Neurosci. Lett. 248, 41–44.PubMedCrossRefGoogle Scholar
  7. Endres M., Wang Z., Namura S., Waeber C., and Moskowitz M. A. (1997) Ischemic brain injury is mediated by the activation of poly (ADP-ribose) polymerase. J. Cereb. Blood Flow Metab. 17, 1143–1151.PubMedCrossRefGoogle Scholar
  8. Fukuda T., Wang H., Nakanishi H., Yamamoto K., and Kosaka T. (1999) Novel nonapoptotic morphological changes in neurons of the mouse hippocampus following transient hypoxic-ischemia. Neurosci. Res. 33(1), 49–55.PubMedCrossRefGoogle Scholar
  9. Gaal J. C., Smith K. R., and Pearson C. K. (1987) Cellular euthanasia mediated by a nuclear enzyme: a central role for nuclear ADP-ribosylation in cellular methabolism. Trends Biol. Sci. 12, 129–130.CrossRefGoogle Scholar
  10. Hatfield R. H., Gill R., and Brazell C. (1992) The dose-response relationship and therapeutic window for dizocipline (MK-801) in a rat focal ischaemia model. Eur. J. Pharmacol. 216, 1–7.PubMedCrossRefGoogle Scholar
  11. Herzeg Z. and Wang Z. Q. (2001) Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat. Res. 477, 97–110.Google Scholar
  12. Johnson G. S. (1981) Benzamide and its derivatives inhibit nicotinamide methylation as well as ADP-ribosylation. Biochem. Int. 2, 611–617.Google Scholar
  13. Lipton P. (1999) Ischemic cell death in brain neurons. Physiol. Res. 79, 1431–1568.Google Scholar
  14. Liu J., Ying W., Massa S., Duriez P. J., Swanson R. A., Poirier G. G., and Sharp F. R. (2000) Effects of transient global ischemia and kainate on poly(ADP-ribose) polymerase (PARP) gene expression and proteolytic cleavage in gerbil and rat brains. Mol. Brain Res. 80, 7–16.PubMedCrossRefGoogle Scholar
  15. Lo E. H., Bosque-Hamilton P., and Meng W. (1998) inhibition of poly(ADP-ribose) polymerase—Reduction of ischemic injury and attenuation of N-methyl-d-aspartate-induced neurotransmitter dysregulation. Stroke 29, 830–836.PubMedGoogle Scholar
  16. Martin L. J., Al-Abdulla N. A., Brambrink A. M., Kirsch J. R., Sieber F. E., and Portera-Cailliau C. (1998) Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res. Bull. 46, 281–309.PubMedCrossRefGoogle Scholar
  17. Milam K. M. and Cleaver J. E. (1984) Inhibitors of poly(adenosine diphosphate-ribose)synthesis: effect on other metabolic processes. Science 223, 589–591.PubMedCrossRefGoogle Scholar
  18. Moroni F., Meli E., Peruginelli F., Chiarugi A., Cozzi A., Picca R., et al. (2001) Poly(ADP-ribose)polymerase inhibitors atenuate necrotic but not apoptotic neuronal death in experimental models of cerebral ischemia. Cell Death Difer. 8, 921–932.CrossRefGoogle Scholar
  19. Nagayama T., Simon R. P., Chen D., Henshall D. C., Pei W., Stetler R. A., and Chen J. (2000) Activation of poly(ADP-ribose) polymerase in the rat hippocampus may contribute to cellular recovery following sublethal transient global ischemia. J. Neurochem. 74, 1636–1645.PubMedCrossRefGoogle Scholar
  20. Nicholson D. W., Ali A., Thornberry N. A., Villancourt J. P., Ding C. K., Gallant M., et al. (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43.PubMedCrossRefGoogle Scholar
  21. Nicotera P., Leist M., and Manzo L. (1999) Neuronal cell death: a demise with different shapes. Trends Pharmacol. Sci. 20, 46–51.PubMedCrossRefGoogle Scholar
  22. Paschen W., Olah L., and Mies G. (2000) Effect of transient focal ischemia of mouse brain on energy state and NAD levels: no evidence that NAD depletion plays a major role in secondary disturbances of energy metabolism. J. Neurochem. 75, 1675–1680.PubMedCrossRefGoogle Scholar
  23. Plaschke K., Kopitz J., Weigand M. A., Martin E., and Bardenheuer H. J. (2000) The neuroprotective effect of cerebral poly(ADP-ribose)polymerase inhibition in a rat model of global ischemia. Neurosci. Lett. 284, 109–112.PubMedCrossRefGoogle Scholar
  24. Prasad S. C., Soladatenkor V, Notario V. Smulson M., and Drotchilo A. (1999) Detection of heterogeneity of poly(ADP-ribose)polymerase in MDA-MD468 brest cancer cells: two dimensional gel analyzing. Electrophoresis 20, 618–625.PubMedCrossRefGoogle Scholar
  25. Satoh M. S. and Lindahl T. (1992) Role of poly(ADP-ribose) formation in DNA repair. Nature 356, 356–358.PubMedCrossRefGoogle Scholar
  26. Small D. L. and Buchan A. M. (1996) Mechanisms of cerebral ischemia: intracellular cascades and therapeutic interventions. J. Cardiothor. Vasc. An. 10, 139–146.CrossRefGoogle Scholar
  27. Smith S. (2001) The world according to PARP. Trends Biochem. Sci. 26, 174–179.PubMedCrossRefGoogle Scholar
  28. Szabo C. and Dawson V. L. (1998) Role of poly(ADP-ribose) synthase in inflammation and ischemia-reperfusion. Trends Pharmacol. Sci. 19, 287–298.PubMedCrossRefGoogle Scholar
  29. Takahashi K., Greenberg J. H., and Greenberg H. (2000) The effect of reperfusion on neuroprotection using an inhibitor of poly(ADP-ribose) polymerase. Neuroreport 10, 2017–2022.CrossRefGoogle Scholar
  30. Takahashi K., Greenberg J. H., Jackson P., Maclin K., and Zhang J. (1997) Neuroprotective effects of inhibiting poly(ADP-ribose) synthetase on focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 17, 1137–1142.PubMedCrossRefGoogle Scholar
  31. Thiemermann C., Bowes J., Myint F. P., and Vane J. R. (1997) Inhibition of the activity of poly(ADP-ribose) synthase reduces ischemia-reperfusion injury in the heart and skeletal muscle. Proc. Natl. Acad. Sci. USA 94, 679–683.PubMedCrossRefGoogle Scholar
  32. Tokime T., Nozaki K., Sugino T., Kikuchi H., Hashimoto N., and Ueda K. (1998) Enhanced poly(ADP-ribosyl)ation after focal ischemia in rat brain. J. Cereb. Blood. Flow Metab. 18, 991–997.PubMedCrossRefGoogle Scholar
  33. Zhang J., Dawson V. L., Dawson T. M., and Snyder S. H. (1994) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263, 687–689.PubMedCrossRefGoogle Scholar
  34. Ziegler M. and Oei S. L. (2001) A cellular survival switch: poly(ADP-ribosyl)ation stimulates DNA repair and silences transcription. Bioessays 23, 543–548.PubMedCrossRefGoogle Scholar
  35. Zingarelli B., Cuzzocrea S., Zsengeller Z., Salzman A. L., and Szabo C. (1997) Protection against myocardial ischemia and reperfusion injury by 3-aminobenzamide, an inhibitor of poly(ADP-ribose) synthetase. Cardiovasc. Res. 36, 205–202.PubMedCrossRefGoogle Scholar
  36. Zingarelli B., Salzman A. L., and Szabo C. (1998) Genetic disruption of poly(ADP-ribose) synthetase inhibits the expression of P-selectin and intracellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ. Res. 83, 85–94.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Robert P. Strosznajder
    • 1
    Email author
  • Roman Gadamski
    • 2
  • Grzegorz A. Czapski
    • 3
  • Henryk Jesko
    • 3
  • Joanna B. Strosznajder
    • 3
  1. 1.Department of NeurophysiologyPolish Academy of SciencesWarsawPoland
  2. 2.Department of NeuropathologyPolish Academy of SciencesWarsawPoland
  3. 3.Department of Cellular Signaling, Medical Research CentrePolish Academy of SciencesWarsawPoland

Personalised recommendations