Journal of Molecular Neuroscience

, Volume 20, Issue 1, pp 53–59 | Cite as

CDP-choline prevents glutamate-mediated cell death in cerebellar granule neurons

  • Cecilia Mir
  • Josep Clotet
  • Rosa Aledo
  • Núria Durany
  • Josep Argemí
  • Rafael Lozano
  • Jordi Cervós-Navarro
  • Núria Casals
Original Articles

Abstract

Cytidine 5′-diphosphocholine (CDP-choline) has been shown to reduce neuronal degeneration induced in central nervous system (CNS) injury. However, the precise mechanism underlying the neuroprotective properties of this molecule is still unknown. Excitotoxicity causes cell death in CNS injury (trauma or ischemia) and has also been involved in neurodegenerative diseases. We have examined whether CDP-choline prevents glutamate-mediated cell death, determined by trypan blue exclusion and lactate dehydrogenase activity assays. Pretreatment of rat cerebellar granule cells (CGCs) with CDP-choline causes a dose- and time-dependent reduction of glutamate-induced excitotoxicity. Cell death is prevented >50% when 100 µM CDP-choline is added 6 d before the glutamate excitotoxic insult but less than 20% when added concomitantly with glutamate. Pretreatment of CGCs with CDP-choline reduces almost completely (>80%) the number of apoptotic cells analyzed by flow cytometry, suggesting that CDP-choline exerts a neuroprotective effect by inhibiting the apoptotic pathway induced by glutamate.

Index Entries

CDP-choline excitotoxicity glutamate apoptosis citicoline neuroprotection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez A. A., Sampedro C., Lozano R., and Cacabelos R. (1999) Citicoline protects hippocampal neurons against apoptosis induced by brain β-amyloid deposits plus cerebral hypoperfusion in rats. Methods Find. Exp. Clin. Pharmacol. 21(8), 535–540.PubMedCrossRefGoogle Scholar
  2. Ankarcrona M., Dypbukt J., Bonfoco E., Zhivotovsky B., Orrenius S., Lipton S. A., and Nicotera P. (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961–973.PubMedCrossRefGoogle Scholar
  3. Ankarcrona M., Dypbukt J., Orrenius S., and Nicotera P. (1996) Calcineurin and mitochondrial function in glutamate-induced neuronal cell death. FEBS Lett. 394, 321–324.PubMedCrossRefGoogle Scholar
  4. Ariga T., Jarvis W. D., and Yu R. K. (1998) Role of sphingolipid-mediated cell death in neurodegenerative diseases. J. Lipid Res. 39, 1–16.PubMedGoogle Scholar
  5. Bachis A., Colangelo A. M., Vicini S., Doe P. P., De Bernardi M. A., Brooker G., and Mocchetti I. (2001) Interleukin-10 prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like activity. J. Neurosci. 21(9), 3104–3112.PubMedGoogle Scholar
  6. Baskaya M. K., Dogan A., and Dempsey, R. J. (2000) Neuroprotective effects of citicoline on brain edema and blood-brain barrier breakdown after traumatic brain injury. J. Neurosury. 92, 448–452.Google Scholar
  7. Blusztajn J. K. (1998) Choline, a vital amine. Science 281, 794–795.PubMedCrossRefGoogle Scholar
  8. Brandoli C., Sanna A., De Bernardi M. A., Follesa P., Brooker G., Mocchetti I. (1998) Brain derived neurotrophic factor and basic fibroblast growth factor downregulate NMDA receptor function in cerebellar granule cells. J. Neurosci. 18, 7953–7961.PubMedGoogle Scholar
  9. Clark W. M., Wechsler L. R., Sabounjian L. A., and Schiderski U. E. (2001) A phase III randomized efficacy trial of 2000 mg citicoline in acute ischemic stroke patients. Neurology 57(9), 1595–1602.PubMedGoogle Scholar
  10. Dixon C. E., Ma X. C., and Marion D. W. (1997) Effects of CDP-choline treatment on neurobehavioral deficits after TBI and on hippocampal and neocortical acetylcholine release. J. Neurotrauma 14, 161–169.PubMedCrossRefGoogle Scholar
  11. Gill J. S. and Windebank A. J. (2000) Ceramide initiates Nf-κβ-mediated caspase activation in neuronal apoptosis. Neurobiol. Dis. 7, 448–461.PubMedCrossRefGoogle Scholar
  12. Kaasik A., Kalda A., Jaako K., and Zharkovsky A. (2001) Dehydroepiandrosterone sulfate prevents oxygen-glucose deprivation-induced injury in cerebellar granule cell culture. Neuroscience 102, 427–432.PubMedCrossRefGoogle Scholar
  13. Miguel-Hidalgo J. J., Alvarez X. A., Lagares R., Franco A., Fernandez-Novoa L., and Cacabelos R. (1996) Brain neurotoxic lesions in rats: study of the neuroprotective effects of citicoline. Eur. Neuropsychopharmacol. 6 (Suppl. 3), 193–194.CrossRefGoogle Scholar
  14. Nonaka S., Hough C. J., and Chuang D. M. (1998) Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor mediated calcium influx. Proc. Natl. Acad. Sci. USA. 95, 2642–2647.PubMedCrossRefGoogle Scholar
  15. Olmos G., DeGregorio-Rocasolano N., Regalado M. P., Gasull T., Boronat M. A., Trullas R., et al. (1999) Protection by imidazol(ine) drugs and agmantine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. Br. J. Pharmacol. 127(6), 1317–1326.PubMedCrossRefGoogle Scholar
  16. Pelled D., Raveh T., Riebeling C., Fridkin M., Berissi H., Futerman A. H., and Kimchi A. (2002) Death associated protein (DAP) kinase plays a central role in ceramide-induced apoptosis in cultured hippocampal neurons. J. Biol. Chem. 277(3), 1957–1961.PubMedCrossRefGoogle Scholar
  17. Ramos B., Salido G. M., Campo M. L., and Claro E. (2000) Inhibition of phosphatidylcholine precedes apoptosis induced by C2-ceramide: protection by exogenous phosphatidylcholine. Neuroreport 11, 3103–3108.PubMedCrossRefGoogle Scholar
  18. Rao A. M., Hatcher J. F., and Dempsey R. J. (1999) DCP-choline: neuroprotection in transient forebrain ischemia of gerbils J. Neurosci. Res. 58, 697–705.PubMedCrossRefGoogle Scholar
  19. Rao A. M., Hatcher J. F., and Dempsey R. J. (2000) Lipid alterations in transient forebrain ischemia: possible new mechanisms of CDP-choline neuroprotection. J. Neurochem. 75, 2528–2535.PubMedCrossRefGoogle Scholar
  20. Shuaib A., Yang Y., Li Q. (2000) Evaluating the efficacy of citicoline in embolic ischemic stroke in rats: neuroprotective effects when used alone or in combination with urokinase. Exp. Neurol. 161, 733–739.PubMedCrossRefGoogle Scholar
  21. Uberti D., Belloni M., Grilli M., Spano P. F., and Memo M. (1998) Induction of tumor-supressor phosphoprotein p53 in the apoptosis of cultured rat cerebellar neurones triggered by excitatory amino acids. Eur. J. Neurosci. 10, 246–254.PubMedCrossRefGoogle Scholar
  22. Uberti D., Grilli M., and Memo M. (2000) Contribution of NF-κβ and p53 in the glutamate-induced apoptosis. Int. J. Dev. Neurosci. 18, 447–454.PubMedCrossRefGoogle Scholar
  23. Willaime S., Vanhoutte P., Caboche J., Lemaigre-Dubreuil Y., Mariani J., and Brugg B. (2001) Ceramide-induced apoptosis in cortical neurons is mediated by an increase in p38 phosphorylation and not by the decrease in ERK phosphorylation. Eur. J. Neurosci. 13, 2037–2046.PubMedCrossRefGoogle Scholar
  24. Yen C. L., Mar M. H., Meeker R. B., Fernandes A., and Zeisel S. H. (2001) Choline deficiency induces apoptosis in primary cultures of fetal neurons. FASEB J. 15(10), 1704–1710.PubMedCrossRefGoogle Scholar
  25. Yen C.-L. E., Mar M.-H., and Zeisel, S. H. (1999) Choline deficiency-induced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacylglycerol, and activation of a caspase. FASEB J. 13, 135–142.PubMedGoogle Scholar
  26. Yu Z. F., Nikolova-Karakashian M., Zhou D., Cheng G., Schuchuman E. H., and Mattson M. P. (2000) Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. J. Mol. Neurosci. 15(2), 85–97.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Cecilia Mir
    • 1
  • Josep Clotet
    • 1
  • Rosa Aledo
    • 1
  • Núria Durany
    • 1
  • Josep Argemí
    • 1
  • Rafael Lozano
    • 2
  • Jordi Cervós-Navarro
    • 1
  • Núria Casals
    • 1
  1. 1.Unit of Molecular and Cellular Biology, Faculty of Health SciencesInternational University of CataloniaBarcelonaSpain
  2. 2.Medical DepartmentFerrer Grupo SABarcelonaSpain

Personalised recommendations