Journal of Molecular Neuroscience

, Volume 17, Issue 2, pp 205–224

Dysregulation of cellular calcium homeostasis in Alzheimer’s disease

Bad genes and bad habits


Calcium is one of the most important intracellular messengers in the brain, being essential for neuronal development, synaptic transmission and plasticity, and the regulation of various metabolic pathways. The findings reviewed in the present article suggest that calcium also plays a prominent role in the pathogenesis of Alzheimer’s disease (AD). Associations between the pathological hallmarks of AD (neurofibrillary tangles [NFT] and amyloid plaques) and perturbed cellular calcium homeostasis have been established in studies of patients, and in animal and cell culture models of AD. Studies of the effects of mutations in the β-amyloid precursor protein (APP) and presenilins on neuronal plasticity and survival have provided insight into the molecular cascades that result in synaptic dysfunction and neuronal degeneration in AD. Central to the neurodegenerative process is the inability of neurons to properly regulate intracellular calcium levels. Increased levels of amyloid β-peptide (Aβ) induce oxidative stress, which impairs cellular ion homeostasis and energy metabolism and renders neurons vulnerable to apoptosis and excitotoxicity. Subtoxic levels of Aβ may induce synaptic dysfunction by impairing multiple signal transduction pathways. Presenilin mutations perturb calcium homeostasis in the endoplasmic reticulum in a way that sensitizes neurons to apoptosis and excitotoxicity; links between aberrant calcium regulation and altered APP processing are emerging. Environmental risk factors for AD are being identified and may include high calorie diets, folic acid insufficiency, and a low level of intellectual activity (bad habits); in each case, the environmental factor impacts on neuronal calcium homeostasis. Low calorie diets and intellectual activity may guard against AD by stimulating production of neurotrophic factors and chaperone proteins. The emerging picture of the cell and molecular biology of AD is revealing novel preventative and therapeutic strategies for eradicating this growing epidemic of the elderly.

Index Entries

Amyloid apoptosis excitotoxicity oxidative stress presenilin synaptic plasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberici A., Moratto D., Benussi L., Gasparini L., Ghidoni R., Gatta L. B., et al. (1999) Presenilin 1 protein directly interacts with Bcl-2. J. Biol. Chem. 274, 30,764–30,769.CrossRefGoogle Scholar
  2. Babcock D. F., Herrington J., Goodwin P. C., Park Y. B., and Hille B. (1997) Mitochondrial participation in the intracellular Ca2+ network. J. Cell Biol. 136, 833–844.PubMedCrossRefGoogle Scholar
  3. Barger S. W. and Mattson M. P. (1996) Induction of neuroprotective κB-dependent transcription by secreted forms of the Alzheimer’s β-amyloid precursor. Mol. Brain Res. 40, 116–126.PubMedCrossRefGoogle Scholar
  4. Barrow P. A., Empson R. M., Gladwell S. J., Anderson C. M., Killick R., Yu X., et al. (2000) Functional phenotype in transgenic mice expressing mutant human presenilin-1. Neurobiol. Dis. 7, 119–126.PubMedCrossRefGoogle Scholar
  5. Begley J. G., Duan W., Chan S., Duff K., and Mattson M. P. (1999) Altered calcium homeostasis and mitochondrial dysfunction in cortical synaptic compartments of presenilin-1 mutant mice. J. Neurochem. 72, 1030–1039.PubMedCrossRefGoogle Scholar
  6. Bernardi P., Colonna R., Constantini P., Eriksson O., Fontaine E., Ichas F., et al. (1998) The mitochondrial permeability transition. Biofactors 8, 273–281.PubMedGoogle Scholar
  7. Billingsley M. L., Ellis C., Kincaid R. L., Martin J., Schmidt M. L., Lee V. M., and Trojanowski J. Q. (1994) Calcineurin immunoreactivity in Alzheimer’s disease. Exp. Neurol. 126, 178–184.PubMedCrossRefGoogle Scholar
  8. Black J. E., Sirevaag A. M., Wallace C. S., Savin M. H., and Greenough W. T. (1989) Effects of complex experience on somatic growth and organ development in rats. Dev. Psychobiol. 22, 727–752.PubMedCrossRefGoogle Scholar
  9. Blanc E. M., Kelly J. F., Mark R. J., and Mattson M. P. (1997) 4-hydroxynonenal, an aldehydic product of lipid peroxidation, impairs signal transduction associated with muscarinic acetylcholine and metabotropic glutamate receptors: possible action on Gaq/11. J. Neurochem. 69, 570–580.PubMedCrossRefGoogle Scholar
  10. Blanc E. M., Keller J. N., Fernandez S., and Mattson M. P. (1998) 4-hydroxynonenal, a lipid peroxidation product, inhibits glutamate transport in astrocytes. Glia 22, 149–160.PubMedCrossRefGoogle Scholar
  11. Bootman M. D., Collins T. J., Peppiatt C. M., Prothero L. S., MacKenzie L., De Smet P., et al. (2001) Calcium signalling: an overview. Semin. Cell Dev. Biol. 12, 3–10.PubMedCrossRefGoogle Scholar
  12. Bourguignon L. Y. and Jin H. (1995) Identification of the ankyrin-binding domain of the mouse T-lymphoma cell inositol 1,4,5-trisphosphate (IP3) receptor and its role in the regulation of IP3-mediated internal Ca2+ release. J. Biol. Chem. 270, 7257–7260.PubMedCrossRefGoogle Scholar
  13. Brillantes A. M., Ondrias B. K., Scott A., Kobrinsky E., Ondriasova E., Moschella M. C., et al. (1999) Stabilization of calcium release channel (ryanodine receptor) function by FK-506 binding protein. Cell 77, 513–523.CrossRefGoogle Scholar
  14. Bruce-Keller A. J., Li Y., Lovell M. A., Kraemer P. J., Gary D. S., Brown R. R., et al. (1998) 4-hydroxynonenal, a product of lipid peroxidation, damages cholinergic neurons and impairs visuospatial memory in rats. J. Neuropathol. Exp. Neurol. 57, 257–267.PubMedGoogle Scholar
  15. Bruce-Keller A. J., Umberger G., McFall R., and Mattson M. P. (1999) Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann. Neurol. 45, 8–15.PubMedCrossRefGoogle Scholar
  16. Butterfield D. A., Hensley K., Harris M., Mattson M. P., and Carney J. (1994) β-amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease. Biochem. Biophys. Res. Commun. 200, 710–715.PubMedCrossRefGoogle Scholar
  17. Buxbaum J. D., Choi E. K., Luo Y., Lilliehook C., Crowley A. C., Merriam D. E., and Wasco W. (1998) Calsenilin: a calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment. Nature Med. 4, 1177–1181.PubMedCrossRefGoogle Scholar
  18. Cameron A. M., Steiner J. P., Roskams A. J., Ali S. M., Ronnett G. V., and Snyder S. H. (1996) Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell 83, 463–472.CrossRefGoogle Scholar
  19. Chan S. L., Mayne M., Holden C. P., Geiger J. D., and Mattson M. P. (2000) Presenilin-1 muations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J. Biol. Chem. 275, 18,195–18,200.Google Scholar
  20. Chapman P. F., White G. L., Jones M. W., Cooper-Blacketer D., Marshall V. J., Irizarry M., et al. (1999). Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nature Neurosci. 2, 271–276.PubMedCrossRefGoogle Scholar
  21. Cheng B. and Mattson M. P. (1992) Glucose deprivation elicits neurofibrillary tangle-like antigenic changes in hippocampal neurons: prevention by NGF and bFGF. Exp. Neurol. 117, 114–123.PubMedCrossRefGoogle Scholar
  22. Cheng B. and Mattson M. P. (1994) NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults. Brain Res. 640, 56–67.PubMedCrossRefGoogle Scholar
  23. Choi S. W. and Mason J. B. (2000) Folate and carcinogenesis: an integrated scheme. J. Nutr. 130, 129–132.PubMedGoogle Scholar
  24. Connolly G. P. (1998) Fibroblast models of neurological disorders: fluorescence measurement studies. Trends Pharmacol. Sci. 19, 171–177.PubMedCrossRefGoogle Scholar
  25. Csordas G. and Hajnoczky G. (2001) Sorting of calcium signals at the junctions of endoplasmic reticulum and mitochondria. Cell Calcium 29, 249–262.PubMedCrossRefGoogle Scholar
  26. Culmsee C., Zhu Z., Yu Q. S., Chan S. L., Camandola S., Guo Z., Greig N., and Mattson M. P. (2001) A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid β-peptide. J. Neurochem. 77, 220–228.PubMedCrossRefGoogle Scholar
  27. de la Torre J. C. (2000) Impaired cerebromicrovascular perfusion. Summary of evidence in support of its causality in Alzheimer’s disease. Ann. NY Acad. Sci. 924, 36–152.Google Scholar
  28. De Strooper B., Annaert W., Cupers P., Saftig P., Craessaerts K., Mumm J. S., et al. (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522.PubMedCrossRefGoogle Scholar
  29. Duan W. and Mattson M. P. (1999) Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J. Neurosci. Res. 57, 195–206.PubMedCrossRefGoogle Scholar
  30. Duan W., Guo Z., and Mattson M. P. (2001) Brain-derived neurotrophic factor mediates an excitoprotective effect of dietary restriction in mice. J. Neurochem. 76, 619–626.PubMedCrossRefGoogle Scholar
  31. Dugan L. L., Sensi S. L., Canzoniero L. M., Handran S. D., Rothman S. M., Goldberg M. P., and Choi D. W. (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J. Neurosci. 15, 6377–6388.PubMedGoogle Scholar
  32. Dumanchin C., Czech C., Campion D., Cuif M. H., Poyot T., Martin C., et al. (1999) Presenilins interact with Rab11, a small GTPase involved in the regulation of vesicular transport. Hum. Mol. Genet. 8, 1263–1269.PubMedCrossRefGoogle Scholar
  33. Eckert A., Forstl H., Zerfass R., Hartmann H., and Muller W. E. (1996) Lymphocytes and neutrophils as peripheral models to study the effect of beta-amyloid on cellular calcium signalling in Alzheimer’s disease. Life Sci. 59, 499–510.PubMedCrossRefGoogle Scholar
  34. Elkind M. S. and Sacco R. L. (1998) Stroke risk factors and stroke prevention. Semin. Neurol. 18, 429–440.PubMedCrossRefGoogle Scholar
  35. Elliott E., Mattson M. P., Vanderklish P., Lynch G., Chang I., and Sapolsky R. M. (1993) Corticosterone exacerbates kainate-induced alterations in hippocampal tau immunoreactivity and spectrin proteolysis in vivo. J. Neurochem. 61, 57–67.PubMedCrossRefGoogle Scholar
  36. Estus S., Tucker H. M., van Rooyen C., Wright S., Brigham E. F., Wogulis M., and Rydel R. E. (1997) Aggregated amyloid-beta protein induces cortical neuronal apoptosis and concomitant “apoptotic” pattern of gene induction. J. Neurosci. 17, 7736–7745.PubMedGoogle Scholar
  37. Evans D. A., Hebert L. E., Beckett L. A., Scherr P. A., Albert M. S., Chown M. J., et al. (1997) Education and other measures of socioeconomic status and risk of incident Alzheimer disease in a defined population of older persons. Arch. Neurol. 54, 1399–1405.PubMedGoogle Scholar
  38. Farkas E. and Luiten P. G. (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog. Neurobiol. 64, 575–611.PubMedCrossRefGoogle Scholar
  39. Furukawa K., Barger S. W., Blalock E., and Mattson M. P. (1996) Activation of K+ channels and suppression of neuronal activity by secreted β-amyloid precursor protein. Nature 379, 74–78.PubMedCrossRefGoogle Scholar
  40. Good T. A., Smith D. O., and Murphy R. M. (1996) Betaamyloid peptide blocks the fast inactivating K+ current in rat hippocampal neurons. Biophys. J. 70, 296–304.PubMedGoogle Scholar
  41. Goodman Y. and Mattson M. P. (1994) Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid β-peptide-induced oxidative injury. Exp. Neurol. 128, 1–12.PubMedCrossRefGoogle Scholar
  42. Goodman Y., Bruce A. J., Cheng B., and Mattson M. P. (1996) Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury and amyloid β-peptide toxicity in hippocampal neurons. J. Neurochem. 66, 1836–1844.PubMedCrossRefGoogle Scholar
  43. Grynspan F., Griffin W. R., Cataldo A., Katayama S., and Nixon R. A. (1997) Active site-directed antibodies identify calpain II as an early-appearing and pervasive component of neurofibrillary pathology in Alzheimer’s disease. Brain Res. 763, 145–158.PubMedCrossRefGoogle Scholar
  44. Gunter T. E., Buntinas L., Sparagna G. C., and Gunter K. K. (1998) The Ca2+ transport mechanisms of mitochondria and Ca2+ uptake from physiological-type Ca2+ transients. Biochim. Biophys. Acta 1366, 5–15.PubMedCrossRefGoogle Scholar
  45. Guo Q., Furukawa K., Sopher B. L., Pham D. G., Robinson N., Martin G. M., and Mattson M. P. (1996) Alzheimer’s PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid β-peptide. Neuro Report 8, 379–383.Google Scholar
  46. Guo G., Sopher B. L., Pham D. G., Furukawa K., Robinson N., Martin G. M., and Mattson M. P. (1997) Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid β-peptide: involvement of calcium and oxyradicals. J. Neurosci. 17, 4212–4222.PubMedGoogle Scholar
  47. Guo Q., Christakos S., Robinson N., and Mattson M. P. (1998a) Calbindin D28k blocks the proapoptotic actions of mutant presenilin 1: reduced oxidative stress and preserved mitochondrial function. Proc. Natl. Acad. Sci. USA 95, 3227–3232.PubMedCrossRefGoogle Scholar
  48. Guo Q., Robinson N., and Mattson M. P. (1998b) Secreted beta-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-κB and stabilization of calcium homeostasis. J. Biol. Chem. 273, 12,341–12,351.Google Scholar
  49. Guo Q., Fu W., Sopher B. L., Miller M. W., Ware C. B., Martin G. M., and Mattson M. P. (1999a) Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knockin mice. Nature Med. 5, 101–107.PubMedCrossRefGoogle Scholar
  50. Guo Q., Sebastian L., Sopher B. L., Miller M. W., Glazner G. W., Ware C. B., et al. Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a presenilin-1 mutation. Proc. Natl. Acad. Sci. USA 96, 4125–4130.Google Scholar
  51. Guo Q., Fu W., Holtsberg F. W., Steiner S. M., and Mattson M. P. (1999c) Superoxide mediates the cell-death enhancing action of presenilin-1 mutations. J. Neurosci. Res. 56, 457–470.PubMedCrossRefGoogle Scholar
  52. Guo Z. and Mattson M. P. (2000) In vivo 2-deoxyglucose administration preserves glucose and glutamate transport and mitochondrial function in cortical synaptic terminals after exposure to amyloid β-peptide and iron: evidence for a stress response. Exp. Neurol. 166, 173–179.PubMedCrossRefGoogle Scholar
  53. Guo Z., Ersoz A., Butterfield D. A., and Mattson M. P. (2000) Beneficial effects of dietary restriction on cerebral cortical synaptic terminals: preservation of glucose transport and mitochondrial function after exposure to amyloid β-peptide and oxidative and metabolic insults. J. Neurochem. 75, 314–320.PubMedCrossRefGoogle Scholar
  54. Hajnoczky G., Robb-Gaspers L. D., Seitz M. B., and Thomas A. P. (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82, 415–424.PubMedCrossRefGoogle Scholar
  55. Hardy, J. (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci. 20, 154–159.PubMedCrossRefGoogle Scholar
  56. Hendrie H. C., Ogunniyi A., Hall K. S., Baiyewu O., Unverzagt F. W., Gureje O., et al. (2001) Incidence of dementia and Alzheimer disease in 2 communities: Yoruba residing in Ibadan, Nigeria, and African Americans residing in Indianapolis, Indiana. JAMA 285, 739–747.PubMedCrossRefGoogle Scholar
  57. Hensley K., Carney J. M., Mattson M. P., Aksenova M., Harris M., Wu J. F., et al. (1994) A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 91, 3270–3274.PubMedCrossRefGoogle Scholar
  58. Hirsch T., Susin S. A., Marzo I., Marchetti P., Zamzami N., and Kroemer G. (1998) Mitochondrial permeability transition in apoptosis and necrosis Cell. Biol. Toxicol. 14, 141–145.PubMedCrossRefGoogle Scholar
  59. Hsiao K., Chapman P., Nilsen S., Eckman C., Harigaya Y., Younkin S., Yang F., and Cole G. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99–102.Google Scholar
  60. Ichas F., Jouaville L. S., Sidash S. S., Mazat J. P., and Holmuhamedov E. L. (1994) Mitochondrial calcium spiking: a transduction mechanism based on calcium-induced permeability transition involved in cell calcium signalling. FEBS Lett. 348, 211–215.PubMedCrossRefGoogle Scholar
  61. Imafuku I., Masaki T., Waragai M., Takeuchi S., Kawabata M., Hirai S., et al. (1999) Presenilin 1 suppresses the function of c-Jun homodimers via interaction with QM/Jif-1. J. Cell Biol. 147, 121–134.PubMedCrossRefGoogle Scholar
  62. Ingram D. K., Weindruch R., Spangler E. L., Freeman J. R., and Walford R. L. (1987) Dietary restriction benefits learning and motor performance of aged mice. J. Gerontol. 42, 78–81.PubMedGoogle Scholar
  63. Ishida A., Furukawa K., Keller J. N., and Mattson M. P. (1997) Secreted from of β-amyloid precursor protein shifts the frequency dependence for induction of LTD, and enhances LTP in hippocampal slices. Neuro Report 8, 2133–2137.Google Scholar
  64. Jaffe A. B., Toran-Allerand C. D., Greengard P., and Gandy S. E. (1994) Estrogen regulates metabolism of Alzheimer amyloid beta precursor protein. J. Biol. Chem. 269, 13,065–13,068.Google Scholar
  65. Johansson B. B. (1996) Functional outcome in rats transferred to an enriched environment 15 days after focal brain ischemia. Stroke 27, 324–326.PubMedGoogle Scholar
  66. Johnsingh A. A., Johnston J. M., Merz G., Xu J., Kotula L., Jacobsen J. S., and Tezapsidis N. (2000) Altered binding of mutated presenilin with cytoskeletoninteracting proteins. FEBS Lett. 465, 53–58.PubMedCrossRefGoogle Scholar
  67. Johnson G. V., Cox T. M., Lockhart J. P., Zinnerman M. D., Miller M. L., and Powers R. E. (1997) Transglutaminase activity is increased in Alzheimer’s disease brain. Brain Res. 751, 323–329.PubMedCrossRefGoogle Scholar
  68. Jones T. A., Chu C. J., Grande L. A., and Gregory A. D. (1999) Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J. Neurosci. 19, 10,153–10,163.Google Scholar
  69. Keller J. N. and Mattson M. P. (1997) 17β-estradiol attenuates oxidative impairment of synaptic Na+/K+-ATPase activity, glucose transport and glutamate transport induced by amyloid β-peptide and iron. J. Neurosci. Res. 50, 522–530.PubMedCrossRefGoogle Scholar
  70. Keller J. N., Pang Z., Geddes J. W., Begley J. G., Germeyer A., Waeg G., and Mattson M. P. (1997) Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid β-peptide: role of the lipid peroxidation product 4-hydroxynonenal. J. Neurochem. 69, 273–284.PubMedCrossRefGoogle Scholar
  71. Keller J. N., Kindy M. S., Holtsberg F. W., St. Clair D. K., Yen H. C., Germeyer A., et al. (1998a) Mn-SOD prevents neural apoptosis by suppression of peroxynitrite production and consequent lipid peroxidation and mitochondrial dysfunction, and reduces ischemic brain injury in vivo. J. Neurosci. 18, 687–697.PubMedGoogle Scholar
  72. Keller J. N., Guo Q., Holtsberg F. W., Bruce-Keller A. J., and Mattson M. P. (1998) Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J. Neurosci. 18, 4439–4450.PubMedGoogle Scholar
  73. Kelliher M., Fastbom J., Cowburn R. F., Bonkale W., Ohm T. G., Ravid R., et al. (1999) Alterations in the ryanodine receptor calcium release channel correlate with Alzheimer’s disease neurofibrillary and beta-amyloid pathologies. Neuroscience 92, 499–513.PubMedCrossRefGoogle Scholar
  74. Kelly J., Furukawa K., Barger S. W., Mark R. J., Rengen M. R., Blanc E. M., et al. (1996) Amyloid β-peptide disrupts carbachol-induced muscarmic cholinergic signal transduction in cortical neurons. Proc. Natl. Acad. Sci. USA 93, 6753–6758.PubMedCrossRefGoogle Scholar
  75. Kempermann G., Kuhn H. G., and Gage F. H. (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495.PubMedCrossRefGoogle Scholar
  76. Khaodhiar L., McCowen K. C., and Blackburn G. L. (1999) Obesity and its comorbid conditions. Clin. Cornerstone 2, 17–31.PubMedCrossRefGoogle Scholar
  77. Kleim J. A., Vij K., Ballard D. H., and Greenough W. T. (1997) Learning-dependent synaptic modifications in the cerebellar cortex of the adult rat persist for at least four weeks. J. Neurosci. 17, 717–721.PubMedGoogle Scholar
  78. Kolb B. and Gibb R. (1991) Environmental enrichment and cortical injury: behavioral and anatomical consequences of frontal cortex lesions. Cereb. Cortex 1, 189–198.PubMedCrossRefGoogle Scholar
  79. Kruman I., Bruce-Keller A. J., Bredesen D. E., Waeg G., and Mattson M. P. (1997) Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J. Neurosci. 17, 5097–5108.Google Scholar
  80. Kruman I. I. and Mattson M. P. (1999) Pivotal role of mitochondrial calcium uptake in neuronal cell apoptosis and necrosis. J. Neuroschem. 72, 529–540.CrossRefGoogle Scholar
  81. Kruman I., Chan S. L., Culmsee C., Kruman Y., Penix L., and Mattson M. P. (2000) Homocysteine elicits a DNA damage response in neurons resulting in apoptosis and hypersensitivity to excitotoxicity. J. Neurosci. 20, 6920–6926.PubMedGoogle Scholar
  82. Kruman I. I., Kumaravel T.S., Lohani A., Cutler R. G., Kruman Y., Haughey N., Pedersen W. A., Evans M. K., and Mattson M. P. (2001) Folate deficiency and homocysteine enhance amyloid toxicity by impairing DNA repair. Soc. Neurosci. Abstr. 31, 962–969.Google Scholar
  83. Lee J., Bruce-Keller A. J., Kruman Y., Chan S., and Mattson M. P. (1999a) 2-deoxy-D-glucose protects hippocampal neurons against excitotoxic and oxidative injury: involvement of stress proteins. J. Neurosci. Res. 57, 48–61.PubMedCrossRefGoogle Scholar
  84. Lee I. M., Hennekens C. H., Berger K., Buring J. E., and Manson J. E. (1999b) Exercise and risk of stroke in male physicians. Stroke 30, 1–6.PubMedGoogle Scholar
  85. Lee C. K., Weindruch R., and Prolla T. A. (2000a) Gene-expression profile of the ageing brain in mice. Nat. Genet. 25, 294–297.PubMedCrossRefGoogle Scholar
  86. Lee J., Duan W., Long J. M., Ingram D. K., and Mattson M. P. (2000b) Dietary restriction increases survival of newly-generated neural cells and induces BDNF expression in the dentate gyrus of rats. J. Mol. Neurosci. 15, 99–108.PubMedCrossRefGoogle Scholar
  87. Leissring M. A., Paul B. A., Parker I., Cotman C. W., and LaFerla F. M. (1999) Alzheimer’s presenilin-1 mutation potentiates inositol 1,4,5-trisphosphate-mediated calcium signaling in Xenopus oocytes. J. Neurochem. 72, 1061–1068.PubMedCrossRefGoogle Scholar
  88. Leissring M. A., Akbari Y., Fanger C. M., Cahalan M. D., Mattson M. P., and LaFerla F. M. (2000) Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J. Cell Biol. 149, 793–798.PubMedCrossRefGoogle Scholar
  89. Leissring M. A., Yamasaki T. R., Wasco W., Buxbaum J. D., Parker, I., and LaFerla F. M. (2000b) Calsenilin reverses presenilin-mediated enhancement of calcium signaling. Proc. Natl. Acad. Sci USA 97, 8590–8593.PubMedCrossRefGoogle Scholar
  90. Li Q. X., Evin G., Small D. H., Multhaup G., Beyreuther K., and Masters C. L. (1995) Proteolytic processing of Alzheimer’s disease beta A4 amyloid precursor protein in human platelets. J. Biol. Chem. 270, 14,140–14,147.Google Scholar
  91. Logroscino G., Marder K., Cote L., Tang M. X., Shea S., and Mayeux R. (1996) Dietary lipids and antioxidants in Parkinson’s disease: a population-based, case-control study. Ann. Neurol. 39, 89–94.PubMedCrossRefGoogle Scholar
  92. Lovell M. A., Ehmann W. D., Mattson M. P., and Markesbery W. R. (1997) Elevated 4-hydroxynonenal levels in ventricular fluid in Alzheimer’s disease. Neurobiol. Aging 18, 457–461.PubMedCrossRefGoogle Scholar
  93. Lowenstein D. H., Chan P., and Miles M. (1991) The stress protein response in cultured neurons: characterization and evidence for a protective role in excitotoxicity. Neuron 7, 1053–1060.PubMedCrossRefGoogle Scholar
  94. Lynch T., Cherny R. A., and Bush A. I. (2000) Oxidative processes in Alzheimer’s disease: the role of abetametal interactions. Exp. Gerontol. 35, 445–451.PubMedCrossRefGoogle Scholar
  95. Mah, A. L., Perry, G., Smith, M. A., and Monteiro, M. J. (2000) Identification of ubiquilin, a novel presenilin interactor that increases presenilin protein accumulation. J. Cell Biol. 151, 847–862.PubMedCrossRefGoogle Scholar
  96. Mark, R. J., Hensley, K., Butterfield, D. A., and Mattson, M. P. (1995) Amyloid β-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci. 15, 6239–6249.PubMedGoogle Scholar
  97. Mark, R. J., Pang, Z., Geddes, J. W., and Mattson, M. P. (1997a) Amyloid β-peptide impairs glucose uptake in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J. Neurosci. 17, 1046–1054.PubMedGoogle Scholar
  98. Mark, R. J., Lovell, M. A., Markesbery, W. R., Uchida, K., and Mattson, M. P. (1997b) A role for 4-hydroxynonenal in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J. Neurochem. 68, 255–264.PubMedCrossRefGoogle Scholar
  99. Mark, R. J., Keller, J. N., Kruman, I., and Mattson, M. P. (1997c) Basic FGF attenuates amyloid beta-peptide-induced oxidative stress, mitochondrial dysfunction, and impairment of Na+/K+-ATPase activity in hippocampal neurons. Brain Res. 756, 205–214.PubMedCrossRefGoogle Scholar
  100. Maruyama, K., Usami, M., Kametani, F., Tomita, T., Iwatsubo, T., Saido, T. C., et al. (2000) Molecular interactions between presenilin and calpain: inhibition of m-calpain protease activity by presenilin-1, 2 and cleavage of presenilin-1 by m-, mu-calpain. Int. J. Mol. Med. 5, 269–273.PubMedGoogle Scholar
  101. Marx, F., Blasko, I., and Grubeck-Loebenstein, B. (1999) Mechanisms of immune regulation in Alzheimer’s disease: a viewpoint. Arch. Immunol. Ther. Exp (Warsz). 47, 205–209.Google Scholar
  102. Mattson, M. P. (1990) Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and Ca2+ influx in cultured hippocampal neurons. Neuron 4, 105–117.PubMedCrossRefGoogle Scholar
  103. Mattson, M. P. (1992) Calcium as sculptor and destroyer of neural circuitry. Exp. Gerontol. 27, 29–49.PubMedCrossRefGoogle Scholar
  104. Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydel, R. E. (1992) β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 376–389.PubMedGoogle Scholar
  105. Mattson, M. P., Tomaselli, K., and Rydel, R. E. (1993a) Calcium-destabilizing and neurodegenerative effects of aggregated β-amyloid peptide are attenuated by basic FGF. Brain Res. 621, 35–49.PubMedCrossRefGoogle Scholar
  106. Mattson, M. P., Cheng, B., Culwell, A., Esch, F., Lieberburg, I., and Rydel, R. E. (1993b) Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of β-amyloid precursor protein. Neuron 10, 243–254.PubMedCrossRefGoogle Scholar
  107. Mattson, M. P. (1994) Secreted forms of β-amyloid precursor protein modulate dendrite outgrowth and calcium responses to glutamate in cultured embryonic hippocampal neurons. J. Neurobiol. 25, 439–450.PubMedCrossRefGoogle Scholar
  108. Mattson, M. P., Lovell, M. A., Furukawa, K., and Markesbery, W. R. K. (1995) Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of [Ca2+]i and neurotoxicity, and increase antioxidant enzyme activities in hippocampal neurons. J. Neurochem. 65, 1740–1751.PubMedCrossRefGoogle Scholar
  109. Mattson, M. P. (1997) Cellular actions of β-amyloid precursor protein, and its soluble and fibrillogenic peptide derivatives. Physiol. Rev. 77, 1081–1132.PubMedGoogle Scholar
  110. Mattson, M. P., Fu, W., Waeg, G., and Uchida, K. (1997) 4-hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. NeuroReport 8, 2275–2281.PubMedCrossRefGoogle Scholar
  111. Mattson, M. P., Robinson, N., and Guo, Q. (1997) Estrogens stabilize mito chondrial function and protect neural cells against the pro-apoptotic action of mutant presenilin-1. NeuroReport 8, 3817–3821.PubMedCrossRefGoogle Scholar
  112. Mattson, M. P. and Duan, W. (1999) Apoptotic biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders. J. Neurosci. Res. 58, 152–166.PubMedCrossRefGoogle Scholar
  113. Mattson, M. P. (2000) Neuroprotective signaling and the aging brain: take away my food and let me run. Brain Res. 886, 47–53.PubMedCrossRefGoogle Scholar
  114. Mattson, M. P., Zhu, H., Yu, J., and Kindy, M. S. (2000a) Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo, and to hypoxia and glucose dep-rivation in cell culture: involvement of perturbed calcium homeostasis. J. Neurosci. 20, 1358–1364.PubMedGoogle Scholar
  115. Mattson, M. P., LaFerla, F. M., Chan, S. L., Leissring, M., Shepel, P. N., and Geiger, J. D. (2000b) Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 23, 222–229.PubMedCrossRefGoogle Scholar
  116. Mattson, M. P. and Camandola, S. (2001) NF-kappaB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest. 107, 247–254.PubMedGoogle Scholar
  117. Mayeux, R., Costa, R., Bell, K., Merchant, C., Tung, M. X., and Jacobs, D. (1999) Reduced risk of Alzheimer’s disease among individuals with low calorie intake. Neurology 59, S296-S297.Google Scholar
  118. McGeer P. L. and McGeer E. G. (1996) Anti-inflammatory drugs in the fight against Alzheimer’s disease. Ann. N. Y. Acad. Sci. 777, 213–220.PubMedCrossRefGoogle Scholar
  119. McKee, A. C., Kosik, K. S., Kennedy, M. B., and Kowall, N. W. (1990) Hippocampal neurons predisposed to neurofibrillary tangle formation are enriched in type II calcium/calmodulin-dependent protein kinase. J. Neuropathol. Exp. Neurol. 49, 49–63.PubMedGoogle Scholar
  120. Meldrum, B. S. (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. 130, 1007S-1015S.PubMedGoogle Scholar
  121. Michaelis, E. K. (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog. Neurobiol. 4, 369–415.CrossRefGoogle Scholar
  122. Miller, M. L. and Johnson, G. V. (1995) Transglutaminase cross-linking of the tau protein. J Neurochem. 65, 1760–1770.PubMedCrossRefGoogle Scholar
  123. Miyata, M. and Smith, J. D. (1996) Apolipoprotein E allelespecific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat. Genet. 14, 55–61.PubMedCrossRefGoogle Scholar
  124. Murayama, M., Tanaka, S., Palacino, J., Murayama, O., Honda, T., Sun, X., et al. (1998) Direct association of presenilin-1 with beta-catenin. FEBS Lett. 433, 73–77.PubMedCrossRefGoogle Scholar
  125. Murray, F. E., Landsberg, J. P., Williams, R. J., Esiri, M. M., and Watt, F. (1992) Elemental analysis of neurofibrillary tangles in Alzheimer’s disease using proton-induced X-ray analysis. Ciba. Found. Symp. 169, 201–210.PubMedGoogle Scholar
  126. Nabeshima, T. and Nitta, A. (1994) Memory impairment and neuronal dysfunction induced by β-amyloid protein in rats. Tohoku J. Exp. Med. 174, 241–249.Google Scholar
  127. Naik, U. P., Patel, P. M., and Parise, L. V. (1997) Identification of a novel calcium-binding protein that interacts with the integrin αIIb cytoplasmic domain. J. Biol. Chem. 272, 4651–4654.PubMedCrossRefGoogle Scholar
  128. Nicholls, D. G. (1985) A role for mitochondria in the protection of cells against calcium overload? Prog. Brain Res. 63, 97–106.PubMedGoogle Scholar
  129. Nilsson, M., Perfilieva, E., Johansson, U., Orwar, O., and Eriksson, P. (1999) Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J. Neurobiol. 39, 569–578.PubMedCrossRefGoogle Scholar
  130. Nitsch, R. M., Farber, S., Growdon, J. H., and Wurtman, R. J. (1993) Release of amyloid beta-protein precursor derivatives by electrical depolarization of rat hippocampal slices. Proc. Natl. Acad. Sci. USA 90, 5191–5193.PubMedCrossRefGoogle Scholar
  131. Niwa, M., Sidrauski, C., Kaufman, R. J., and Walter, P. (1999) A role for presenilin-1 in nuclear accumulation of Irel fragments and induction of the mammalian unfolded protein response. Cell 99, 691–702.PubMedCrossRefGoogle Scholar
  132. Nixon, R. A., Saito, K. I., Grynspan, F., Griffin, W. R., Katayama, S., Honda, T., et al. (1994) Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer’s disease. Ann. NY Acad. Sci. 747, 77–91.PubMedCrossRefGoogle Scholar
  133. Pack-Chung, E., Meyers, M. B., Pettingell, W. P., Moir, R. D., Brownawell, A. M., Cheng, I., et al. (2000) Presenilin 2 interacts with sorcin, a modulator of the ryanodine receptor. J. Biol. Chem. 275, 14440–14445.PubMedCrossRefGoogle Scholar
  134. Pappolla, M. A., Chyan, Y. J., Omar, R. A., Hsiao, K., Perry, G., Smith, M. A., and Bozner, P. (1998) Evidence of oxidative stress and in vivo neurotoxicity of betaamyloid in a transgenic mouse model of Alzheimer’s disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am. J. Pathol. 152, 871–877.PubMedGoogle Scholar
  135. Parent, A., Linden, D. J., Sisodia, S. S., and Borchelt, D. R. (1999) Synaptic transmission and hippocampal long-term potentiation in transgenic mice expressing FAD-linked presenilin 1. Neurobiol. Dis. 6, 56–62.PubMedCrossRefGoogle Scholar
  136. Passer, B. J., Pellegrini, L., Vito, P., Ganjei, J. K., and D’Adamio, L. (1999) Interaction of Alzheimer’s presenilin-1 and presenilin-2 with Bcl-X(L). A potential role in modulating the threshold of cell death. J. Biol. Chem. 274, 24,007–24,013.CrossRefGoogle Scholar
  137. Pedersen, W. A., Chan, S. L., and Mattson, M. P. (2000) A mechanism for the neuroprotective effect of apolipoprotein E: isoform-specific modification by the lipid peroxidation product 4-hydroxynonenal. J. Neurochem. 74, 1426–1433.PubMedCrossRefGoogle Scholar
  138. Petryniak, M. A., Wurtman, R. J., and Slack, B. E. (1996) Elevated intracellular calcium concentration increases secretory processing of the amyloid precursor protein by a tyrosine phosphorylation-dependent mechanism. Biochem. J. 320, 957–963.PubMedGoogle Scholar
  139. Pickel, V. M., Clarke, C. L., and Meyers, M. B. (1997) Ultrastructural localization of sorcin, a 22 kDa calcium binding protein, in the rat caudate-putamen nucleus: association with ryanodine receptors and intracellular calcium release. J. Comp Neurol 386, 625–634.PubMedCrossRefGoogle Scholar
  140. Pike, C. J. (1999) Estrogen modulates neuronal Bcl-xL expression and beta-amyloid-induced apoptosis: relevance to Alzheimer’s disease. J. Neurochem. 72, 1552–1563.PubMedCrossRefGoogle Scholar
  141. Querfurth, H. W. and Selkoe, D. J. (1994) Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry 33, 4550–4561.PubMedCrossRefGoogle Scholar
  142. Ruck, A., Dolder, M., Wallimann, T., and Brdiczka, D. (1998) Reconstituted adenine nucleotide translocase forms a channel for small molecules comparable to the mitochondrial permeability transition pore. FEBS Lett. 426, 97–101.PubMedCrossRefGoogle Scholar
  143. Russo-Neustadt, A. A., Beard, R. C., Huang, Y. M., and Cotman, C. W. (2000) Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neuroscience 101, 305–312.PubMedCrossRefGoogle Scholar
  144. Saito, S., Kobayashi, S., Ohashi, Y., Igarashi, M., Komiya, Y., and Ando, S. (1994) Decreased synaptic density in aged brains and its prevention by rearing under enriched environment as revealed by synaptophysin contents. J. Neurosci. Res. 39, 57–62.PubMedCrossRefGoogle Scholar
  145. Sayre L. M, Zelasko D. A., Harris P. L., Perry G., Salomon R. G., Smith M. A. (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J. Neurochem. 68, 2092–2097.PubMedCrossRefGoogle Scholar
  146. Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., et al. (1999) Immunization with amyloidbeta attenuates Alzheimer disease-like pathology in the PDAPP mouse. Nature 400, 173–177.PubMedCrossRefGoogle Scholar
  147. Scheper, W., Zwart, R., Sluijs, P., Annaert, W., Gool, W. A., and Baas, F. (2000) Alzheimer’s presenilin 1 is a putative membrane receptor for rab GDP dissociation inhibitor. Hum. Mol. Genet. 9, 303–310.PubMedCrossRefGoogle Scholar
  148. Scott, J. M. and Weir, D. G. (1998) Folic acid, homocysteine and one-carbon methabolism: a review of the essential biochemistry. J. Cardiovasc. Risk 5, 223–227.Google Scholar
  149. Sennvik, K., Benedikz, E., Fastbom, J., Sundstrom, E., Winblad, B., and Ankarcrona, M. (2001) Calcium ionophore A23187 specifically decreases the secretion of betasecretase cleaved amyloid precursor protein during apoptosis in primary rat cortical cultures. J. Neurosci. Res. 63, 429–437.PubMedCrossRefGoogle Scholar
  150. Shinozaki, K., Maruyama, K., Kume, H., Tomita, T., Saido, T. C., Iwatsubo, T., and Obata, K. (1998) The presenilin 2 loop domain interacts with the mu-calpain C-terminal region. Int. J. Mol. Med. 1, 797–799.PubMedGoogle Scholar
  151. Simpson, P. B. and Russell, J. T. (1998). Role of mitochondrial Ca2+ regulation in neuronal and glial cell signaling. Brain Res. Rev. 26, 72–81.PubMedCrossRefGoogle Scholar
  152. Smith, P. J., Hammar, K., and Tytell, M. (1995) Effects of exogenous heat shock protein (hsp70) on neuronal calcium flux. Biol. Bull. 189, 209–210.PubMedGoogle Scholar
  153. Smith, S. K., Anderson, H. A., Yu, G., Robertson, A. G., Allen, S. J., Tyler, S. J., et al. (2000) Identification of syntaxin 1A as a novel binding protein for presenilin-1. Mol. Brain Res. 78, 100–107.PubMedCrossRefGoogle Scholar
  154. Smith-Swintosky, V. L., Pettigrew, C., Craddock, S. D., Culwell, A. R., Rydel, R. E. and Mattson, M. P. (1994) Secreted forms of β-amyloid precursor protein protect against ischemic brain injury. J. Neurochem., 63, 781–784.PubMedCrossRefGoogle Scholar
  155. Snowdon, D. A., Kemper, S. J., Mortimer, J. A., Greiner, L. H., Wekstein, D. R., and Markesbery, W. R. (1996) Linguistic ability in early life and cognitive function and Alzheimer’s disease in late life. Finding from the Nun Study. JAMA 275, 528–532.PubMedCrossRefGoogle Scholar
  156. Stabler, S. M., Ostrowski, L. L., Janicki, S. M., and Monteiro, M. J. (1999) Amyristoylated calcium-binding protein that preferentially interacts with the Alzheimer’s disease presenilin 2 protein. J. Cell Biol. 145, 1277–1292.PubMedCrossRefGoogle Scholar
  157. Stein-Behrens, B., Mattson, M. P., Chang, I., Yeh, M., and Sapolsky, R. (1994) Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus. J. Neurosci. 14, 5373–5380.PubMedGoogle Scholar
  158. Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., and Roses, A. D. (1993) Apolipoprotein E: high-avidity binding to beta amyloid and increased frequency of type 4 allele in lateonset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 1977–1981.PubMedCrossRefGoogle Scholar
  159. Swain, R.A. and St Clair, L. (1997). The role of folic acid in deficiency states and prevention of disease. J. Fam. Pract. 44, 138–144.PubMedGoogle Scholar
  160. Takashima, A., Murayama, M., Murayama, O., Kohno, T., Honda, T., Yasutake, K., et al. (1998) Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau. Proc. Natl. Acad. Sci. USA 95, 9637–41.PubMedCrossRefGoogle Scholar
  161. Tang, M. X., Jacobs, D., Stern, Y., Marder, K., Schofield, P., Gurland, B., et al. (1996): Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 348: 429–432.PubMedCrossRefGoogle Scholar
  162. Tolar, M., Keller, J. N., Chan, S. L., Mattson, M. P., Marques, M. A., and Crutcher, K. A. (1999) Truncated apolipoprotein E (ApoE) causes increased intracellular calcium and may mediate ApoE neurotoxicity. J. Neurosci. 19, 7100–7110.PubMedGoogle Scholar
  163. Trejo, J. L., Carro, E., and Torres-Aleman, I. (2001) Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628–1634.PubMedGoogle Scholar
  164. Van Gassen, G., De Jonghe, C., Pype, S., Van Criekinge, W., Julliams, A., Vanderhoeven, I., et al. (1999) Alzheimer’s disease associated presenilin 1 interacts with HC5 and ZETA, subunits of the catalytic 20S proteasome. Neurobiol. Dis. 6, 376–391.PubMedCrossRefGoogle Scholar
  165. van Praag, H., Kempermann, G., and Gage, F. H. (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2, 266–270.PubMedCrossRefGoogle Scholar
  166. van Rijzingen, I. M., Gispen, W. H., and Spruijt, B. M. (1997) Postoperative environmental enrichment attenuates fimbria-fornix lesion-induced impairments in Morris maze performance. Neurobiol. Learn. Mem. 67, 21–28.PubMedCrossRefGoogle Scholar
  167. Wang, G. T., Ladror, U. S., Holzman, T. F., Klein, W., and, Krafft, G. A. (1994) Cleavage of fluorogenic substrates for APP-processing proteases by human brain extracts. Ca(2+) substrate interaction is responsible for Ca2+ stimulation of the neural protease activity. Mol. Chem. Neuropathol. 23, 191–199.PubMedGoogle Scholar
  168. Watt, F. (1996) Nuclear microscope analysis in Alzheimer’s and Parkinson’s disease: a review. Cell Mol. Biol 42, 17–26.PubMedGoogle Scholar
  169. Weindruch, R. and Sohal, R. S. (1997) Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N. Engl. J. Med. 337, 986–994.PubMedCrossRefGoogle Scholar
  170. Wolozin, B., Iwasaki, K., Vito, P., Ganjei, J. K., Lacana, E., Sunderland, T., et al. (1996) Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation. Science 274, 1710–1713.PubMedCrossRefGoogle Scholar
  171. Woolley, C. S. and McEwen, B. S. (1994) Estradiol regulates hippocampal dendritic spine density via an N-methyl-D-aspartate receptor-dependent mechanism. J. Neurosci. 14, 7680–7687.PubMedGoogle Scholar
  172. Wu, X. and Lieber, M. R. (1997) Interaction between DNA-dependent protein kinase and a novel protein, KIP. Mut. Res. 385, 13–20.Google Scholar
  173. Xia, W., Ostaszewski, B. L., Kimberly, W. T., Rahmati, T., Moore, C. L., Wolfe, M. S., and Selkoe, D.J. (2000) FAD mutations in presenilin-1 or amyloid precursor protein decrease the efficacy of a gamma-secretase inhibitor: evidence for direct involvement of PS1 in the gamma secretase cleavage complex. Neurobiol. Dis. 7, 673–681.PubMedCrossRefGoogle Scholar
  174. Xiao, J., Perry, G., Troncoso, J., and Monteiro, M. J. (1996) alpha-calcium-calmodulin-dependent kinase II is associated with paired helical filaments of Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 55, 954–963.PubMedCrossRefGoogle Scholar
  175. Xu, X., Shi, Y., Wu, X., Gambetti, P., Sui, D., and Cui, M. Z. (1999) Identification of a novel PSD-95/Dlg/ZO-1 (PDZ)-like protein interacting with the C terminus of presenilin-1. J. Biol. Chem. 274, 32,543–32,546.Google Scholar
  176. Tanahashi H., and Tabira T. (2000) Alzheimer’s disease-associated presenilin 2 interacts with DRAL, an LIM-domain protein. Hum. Mol. Genet. 9(15); 2281–2289.PubMedGoogle Scholar
  177. Yamada, M., Miyawaki, A., Saito, K., Nakajima, T., Yamamoto-Hino, M., Ryo, Y., et al. (1995) The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem. J. 308, 83–88.PubMedGoogle Scholar
  178. Yankner, B. A. (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16, 921–932.PubMedCrossRefGoogle Scholar
  179. Yoo, A. S., Cheng, I., Chung, S., Grenfell, T. Z., Lee, H., Pack-Chung, E., et al. (2000) Presenilin-mediated modulation of capacitative calcium entry. Neuron 27, 561–572.PubMedCrossRefGoogle Scholar
  180. Yu, G., Nishimura, M., Arawaka, S., Levitan, D., Zhang, L., Tandon, A., et al. (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 407, 48–54.PubMedCrossRefGoogle Scholar
  181. Yu, Z. F. and Mattson, M. P. (1999) Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. J. Neurosci. Res. 57, 830–839.PubMedCrossRefGoogle Scholar
  182. Yu, Z., Luo, H., Fu, W., and Mattson, M.P. (1999) The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp. Neurol. 155, 302–314.PubMedCrossRefGoogle Scholar
  183. Zamparelli, C., Ilari, A., Verzili, D., Giangiacomo, L., Colotti, G., Pascarella, S., and Chiancone, E. (2000) Structure-function relationships of sorcin, a member of the penta EF-hand family: interaction of sorcin fragments with the ryanodine receptor and an Escherichia coli model system. Biochemistry 39, 658–666.PubMedCrossRefGoogle Scholar
  184. Zhu, H., Guo, Q., and Mattson, M. P. (1999) Dietary restriction protects hippocampal neurons against the death-promoting action of a presenilin-1 mutation. Brain Res. 842, 224–229.PubMedCrossRefGoogle Scholar
  185. Zhang W., Han S. W., McKeel D. W., Goate A., and Wu J. Y. Interaction of presenilins with the filamin family of actin-binding proteins. J. Neurosci. 199818(3):914–922.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  1. 1.Department of NeuroscienceJohns Hopkins University School of MedicineBaltimore
  2. 2.Laboratory of NeurosciencesNational Institute on Aging Gerontology Research Center 4F02Baltimore

Personalised recommendations