Journal of Molecular Neuroscience

, Volume 16, Issue 2–3, pp 167–172 | Cite as

Fatty acid uptake and incorporation in brain

Studies with the perfusion model
Article

Abstract

The contributions of individual components of blood to brain [14C]palmitate uptake and incorporation were studied with the in situ brain perfusion technique in the pentobarbital-anesthetized rat. With whole-blood perfusate, brain unacylated [14C]palmitate uptake was linear with time and extrapolated to zero at T=0 s of perfusion. Tracer accumulated in brain with a blood-to-brain transfer coefficient of 1.8 ± 0.1 × 10−4 mL/s/g (whole cerebral hemisphere). Incorporation into brain lipids was rapid such that ∼40% of tracer in brain at 45 s of perfusion was in cerebral phospholipids and neutral lipids. Similar rates of uptake were obtained during unacylated [14C]palmitate perfusion in whole rat plasma, serum, or artificial saline containing 2–3% albumin, suggesting that albumin has a key role in determining [14C]palmitate uptake in brain. The excellent match in brain uptake rates between whole blood and albumin-containing saline fluid suggests that the perfusion technique will be useful method for quantifying the individual contributions of blood constituents and albumin binding on brain [14C]palmitate uptake.

Index Entries

Blood-brain barrier protein binding cerebrovascular palmitate capillary lipid metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agranoff B. W., Benjamins J. A., and Hajra A. K. (1999) Lipids, in Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th ed. (Siegal, G.J., et al., ed.), Lippincott-Raven, Philadelphia, PA, pp. 47–67.Google Scholar
  2. Alberghina M., Infarinato S., Anfuso C. D., and Lupo G. (1994) 1-Acyl-2-lysophosphatidylcholine transport across the blood-retina and blood-brain barrier. FEBS Lett. 351, 181–185.PubMedCrossRefGoogle Scholar
  3. Bernoud N., Fenart L., Molière P., Dhouck M-P., Lagarde M., Cecchelli R., and Lecerf, J. (1999) Preferential transfer of 2-docosahexaenoyl-1-lysophosphatidyl-choline through an in vitro blood-brain barrier over unesterified docosahexaenoic acid. J. Neurochem. 72, 338–345.PubMedCrossRefGoogle Scholar
  4. Brecher P. and Kuan H-T. (1979) Lipoprotein lipase and acid lipase activity in the rabbit brain microvessels. J. Lipid Res. 20, 464–471.PubMedGoogle Scholar
  5. Edmond J., Higa T. A., Korsak R. A., Bergner E. A., and Lee W.-N. P. (1998) Fatty acid transport and utilization for the developing brain. J. Neurochem. 70, 1227–1234.PubMedCrossRefGoogle Scholar
  6. DeGeorge J. J., Noronha J. G., Bell J., Robinson P., and Rapoport S. I. (1989) Intravenous injection of [1-14C]arachidonate to examine regional brain lipid metabolism in unanesthetized rats. J. Neurosci Res. 24, 413–423.PubMedCrossRefGoogle Scholar
  7. Dhopeshwarkar G. A. and Mead J.F. (1973) Uptake and transport of fatty acids into the brain and the role of the blood-brain barrier system. Adv. Lipid Res. 11, 109–142.PubMedGoogle Scholar
  8. Grange E., Deutsch J., Smith Q. R., Chang M., Rapoport S. I., and Purdon A. D. (1995) Specific activity of brain palmitoyl-CoA pool provides rates of incorporation of palmitate in brain phospholipids in wake rats. J. Neurochem. 65, 2290–2298.PubMedCrossRefGoogle Scholar
  9. Hamilton J. A. and Kamp F. (1999) How are free fatty acids transported in membranes? Diabetes 48, 2255–2269.PubMedCrossRefGoogle Scholar
  10. Kimes A. S., Sweeney D., and Rapoport S. I. (1985) Brain palmitate incorporation in awake and anesthetized rats. Brain Res. 341, 164–170.PubMedCrossRefGoogle Scholar
  11. Marbois N. B., Ajie H. O., Korsak R. A., Sensharma D. K., and Edmond J. (1992) The origin of palmitic acid in brain of the developing rat. Lipids 27, 587–592.PubMedCrossRefGoogle Scholar
  12. Méresse S., Delbart C., Fruchart J-C., and Cecchelli R. (1989) Low-density lipoprotein receptor on endothelium of brain capillaries. J. Neurochem. 53, 340–345.PubMedCrossRefGoogle Scholar
  13. Noronha J. G., Bell J. M., and Rapoport S. I. (1990) Quantitative brain autoradiography of [9,10-3H] palmitic acid incorporation into brain lipids. J. Neurosci. Res. 26, 196–208.PubMedCrossRefGoogle Scholar
  14. Pardridge W. M. and Mietus L. J. (1980) Palmitate and cholesterol transport through the blood-brain barrier. J. Neurochem. 34, 463–466.PubMedCrossRefGoogle Scholar
  15. Rabin O., Hegedus L., Bourre J. M., and Smith Q. R. (1993) Rapid brain uptake of manganese (II) across the blood-brain barrier. J. Neurochem. 61, 509–517.PubMedCrossRefGoogle Scholar
  16. Richieri G. V., Anel A., and Kleinfeld A. (1993) Interactions of long-chain fatty acid and albumin: determination of free fatty acid levels using the fluorescent probe AD1-FAB. Biochemistry 32, 7574–7579PubMedCrossRefGoogle Scholar
  17. Robinson P. J., Noronha J., DeGeorge J. J., Freed L. M., Nariai T., and Rapoport S. I. (1992) A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res. Rev. 17, 187–214.PubMedCrossRefGoogle Scholar
  18. Smith Q. R. (1996) Brain perfusion systems for studies of drug uptake and metabolism in the central nervous system. Pharmaceut. Biotech. 8, 285–308.Google Scholar
  19. Spector A. A. (1986) Structure and lipid-binding properties of serum albumin. Meth Enzymol. 128, 320–339.PubMedCrossRefGoogle Scholar
  20. Spector R. (1998) Fatty acid transport through the blood-brain barrier. J. Neurochem. 50, 639–643.CrossRefGoogle Scholar
  21. Takasato Y., Rapoport S. I., and Smith Q. R. (1984) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol. 246, H484-H493.Google Scholar
  22. Thiès F., Delachambre M. C., Bentejac M., Lagarde M., and Lecerf J. (1992) Unsaturated fatty acids esterified in 2-acyl-1-lysophosphatidylcholine bound to albumin are more efficiently taken up by the young rat brain than the unesterified form. J. Neurochem. 59, 1110–1116.PubMedCrossRefGoogle Scholar
  23. Wosilait W. D. and Soler-Argilaga C. (1975) A theoretical analysis of the multiple binding of palmitate by bovine serum albumin: the relationship to uptake of free fatty acids by tissues. Life Sci. 17, 159–166.PubMedCrossRefGoogle Scholar
  24. Yamazaki S., DeGeorge J. J., Bell J., and Rapoport S. I. (1994) Effects of pentobarbital on incorporation of plasma palmitate into rat brain. Anesthesiology 80, 151–158.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesTexas Tech University Health Sciences CenterAmarillo
  2. 2.Laboratory of NeurosciencesNational Institute on Aging, NIHBethesda

Personalised recommendations