Journal of Molecular Neuroscience

, Volume 16, Issue 2–3, pp 159–165 | Cite as

Plasma free fatty acid and lipoproteins as sources of polyunsaturated fatty acid for the brain



Polyunsaturated fatty acids (PUFA), which comprise 25–30% of the fatty acids in the human brain, are necessary for normal brain development and function. PUFA cannot be synthesized de novo and must be supplied to the brain by the plasma. It is necessary to know the PUFA content and composition of the various plasma lipids and lipoproteins in order to understand how these fatty acids are taken up and metabolized by the brain. Human plasma free fatty acid (FFA) ordinarily contains about 15% linoleic acid (18:2n–6) and 1% arachidonic acid (AA) (20:4n–6). Plasma triglycerides, phospholipids, and cholesterol esters also are rich in linoleic acid, and the phospholipids and cholesterol esters contain about 10% AA. These findings suggest that the brain probably can obtain an adequate supply of n-6 PUFA from either the plasma FFA or lipoproteins. By contrast, the plasma ordinarily contains only one-tenth as much n-3 PUFA, and the amounts range from 1% α-linolenic acid (18:3n–3) in the plasma FFA to 2% docosahexaenoic acid (22:6n–3, DHA) in the plasma phospholipids. The main n-3 PUFA in the brain is DHA. Therefore, if the plasma FFA is the primary source of fatty acid for the brain, much of the DHA must be synthesized in the brain from n-3 PUFA precursors. Alternatively, if the brain requires large amounts of preformed DHA, the phospholipids contained in plasma lipoproteins are the most likely source.

Index Entries

Free fatty acid lipoprotein polyunsaturated fatty acid linoleic acid α-linolenic acid arachidonic acid docosahexaenoic acid phospholipid blood-brain barrier astrocyte 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernoud N., Fenart L., Moliere P., Lagarde M., Cecchelli R., and Lecerf J. (1999) Preferential transfer of 2-docosahexaenoyl-1-lysophosphatidylcholine through an in vitro blood-brain barrier over unesterified docosahexaenoic acid. J. Neurochem. 72, 338–345.PubMedCrossRefGoogle Scholar
  2. Brecher P. and Kuan H. T. (1979) Lipoprotein lipase and acid lipase activity in rabbit brain microvessels. J. Lipid Res. 20, 464–471.PubMedGoogle Scholar
  3. Connor W. E., Lowensohn R., and Hatcher L. (1996) Increased docosahexaenoic acid levels in human newborn infants by administration of sardines and fish oil during pregnancy. Lipids 31, S183-S187.PubMedCrossRefGoogle Scholar
  4. Conquer J. A. and Holub B. J. (1998) Effect of supplementation with different doses of DHA on the levels of circulating DHA as non-esterified fatty acid in subjects of Asian Indian background. J. Lipid Res. 39, 286–292.PubMedGoogle Scholar
  5. DeGeorge J. J., Nariri T., Yamazaki S., Williams W. M., and Rapoport S. I. (1989) Intravenous injection of [1-14C]arachidonate to examine regional brain lipid metabolism in unanesthetized rats. J. Neurosci. Res. 24, 413–423.PubMedCrossRefGoogle Scholar
  6. Dehouck B., Dehouck M. P., Fruchart J. C., and Cecchelli R. (1994) Upregulation of the low density lipoprotein receptor at the blood: brain barrier: intercommunication between brain capillary endothelial cells and astrocytes. J. Cell Biol. 126, 465–473.PubMedCrossRefGoogle Scholar
  7. Dehouck B., Fenart L., Dehouck M. P., Pierce A., Torpier G., and Cecchelli R. (1997) A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J. Cell Biol. 138, 877–889.PubMedCrossRefGoogle Scholar
  8. de Vries H. F., Kuiper J., de Boer A. G., van Verkel T. J., and Breimer D. D. (1993) Characterization of the scavenger receptor on bovine cerebral cerebral endothelial cells in vitro. J. Neurochem. 61, 1813–1821.PubMedCrossRefGoogle Scholar
  9. Delton-Vanderbroucke I., Grammas P., and Anderson R. E. (1997). Polyunsaturated fatty acid metabolism in retinal and cerebral microvascular endothelial cells. J. Lipid Res. 38, 147–159.Google Scholar
  10. Dhopeshwarkar G. A. and Subramanian C. (1976) Biosynthesis of polyunsaturated fatty acids in the developing brain: I. Metabolic transformations of intracranially administered 1-14C linolenic acid. Lipids 11, 67–71.PubMedCrossRefGoogle Scholar
  11. Edelstein C. (1986) General properties of plasma lipoproteins and apolipoproteins, in Biochemistry and Biology of Plasma Lipoproteins (Scanu, A. M. and Spector, A. A., eds.), Marcel Dekker, New York, NY, pp. 495–505.Google Scholar
  12. Goodman D. S. and Shiratori T. (1964) Fatty acid composition of human plasma lipoprotein fractions. J. Lipid Res. 5, 307–313.PubMedGoogle Scholar
  13. Hansen J.-B., Grimsgaard S., Nilsen H., Nordoy A., and Bonaa K. H. (1998) Effects of highly purified eicosapentaenoic acid and docosahexaenoic acid on fatty acid absorption, incorporation into serum phospholipids and postprandial triglyceridemia. Lipids 33, 131–138.PubMedCrossRefGoogle Scholar
  14. Innis S. M., Auestad N., and Siegman J. S. (1996) Blood lipid docosahexaenoic and arachidonic acid in term gestation infants fed formulas with high docosahexaenoic acid, low eicosapentaenoic acid fish oil. Lipids 31, 617–625.PubMedCrossRefGoogle Scholar
  15. Lagarde M., Bernoud N., Brossard N., Lemaitre-Delaunay D., Thies F., Croset M., and Lecerf J. (2001) Lysophosphatidylcholine as a preferred carrier form of docosahexaenoic acid to the brain. J. Mol. Neurosci. 16 (2–3),Google Scholar
  16. Lands W. E. M., Libelt B., Morris A., Kramer N. C., Prewitt T. E., Bowen P., et al. (1992) Maintenance of lower proportions of (n-6) eicosanoid precursors in phospholipids of human plasma in response to added dietary (n-3) fatty acids. Biochim. Biophys. Acta. 1180, 147–162.PubMedGoogle Scholar
  17. Lucarelli M., Gennarelli M., Cardelli P., Novelli G., Scarpa S., Dallapiccola B., and Strom R. (1997) Expression of receptors for native and chemically modified low-density lipoproteins in brain microvessels. FEBS Lett. 401, 53–58.PubMedCrossRefGoogle Scholar
  18. Martin D. D., Robbins M. E. C., Spector A. A., Wen B.-C., and Hussey, D. H. (1996) The fatty acid composition of human gliomas differs from that found in nonmalignant brain tissue. Lipids 31, 1283–1288.PubMedCrossRefGoogle Scholar
  19. Martin-Nizard F., Meresse S., Cecchelli R., Fruchart J. C., and Delbart C. (1989) Interactions of high-density lipoprotein 3 with brain capillary endothelial cells. Biochim. Biophys. Acta. 1005, 201–208.PubMedGoogle Scholar
  20. Moore S. A., Yoder E., and Spector A. A. (1990) Role of the blood-brain barrier in the formation of long-chain ω-3 and ω-6 fatty acids from essential fatty acid precursors. J. Neurochem. 55, 391–402.PubMedCrossRefGoogle Scholar
  21. Moore S. A., Yoder E., Murphy S., Dutton G. R., and Spector A. A. (1991) Astrocytes, not neurons, produce docosahexaenoic acid (22;6ω-3) and arachidonic acid (20;4ω-6). J. Neurochem. 56, 518–524.PubMedCrossRefGoogle Scholar
  22. Morrisett J. D., Pownall H. J., Jackson R. L., Segura R., Gotto A. M., Jr., and Taunton O. D. (1976). Effects of polyunsaturated and saturated fat diets on the chemical composition and thermotropic properties of human plasma lipoproteins, in Polyunsaturated Fatty Acids (Kunau, W. H. and Holman, R. T., eds.), American Oil Chemists’ Society, Champaign, IL, pp. 139–161.Google Scholar
  23. Nariri T., DeGeorge J. J., Lamour Y., and Rapoport, S. I. (1991) In vivo incorporation of [1-14C]arachidonate in awake rats, with and without cholinergic stimulation, following unilateral lesioning of nucleus basalis magnocellularis. Brain Res. 559, 1–9.CrossRefGoogle Scholar
  24. Nariri T., Greig N. H., DeGeorge J. J., Genka S., and Rapoport, S. I. (1993) Intravenously injected radiolabeled fatty acids image brain tumor phospholipids in vivo: differential uptakes of palmitate, arachidonate and docosahexaenoate. Clin. Exp. Metastasis. 11, 141–149.CrossRefGoogle Scholar
  25. Nouvelot A., Delbart C., and Bourre, J. M. (1986) Hepatic metabolism of alpha-linolenic acid in suckling rats, and its possible importance in polyunsaturated fatt acid uptake by the brain. Ann. Nutr. Metab. 30, 316–323.PubMedCrossRefGoogle Scholar
  26. Pace-Asciak C. (1989) One-step rapid extractive methylation of plasma nonesterified fatty acids for gas chromatographic analysis. J. Lipid Res. 30, 451–454.PubMedGoogle Scholar
  27. Pawlosky R. J., Ward G., and Salem N. Jr. (1996) Essential fatty acid uptake and metabolism in the developing rodent brain. Lipids 31, S103-S107.PubMedCrossRefGoogle Scholar
  28. Purdon D., Arai T., and Rapoport S. I. (1997) No evidence for direct incorporation of esterified palmitate from plasma into brain lipids of awake adult rats. J. Lipid Res. 38, 526–530.PubMedGoogle Scholar
  29. Rogiers V. (1981) Long chain nonesterified fatty acid patterns in plasma of healthy children and young adults in relation to age and sex. J. Lipid Res. 22, 1–16.PubMedGoogle Scholar
  30. Scott B. L. and Bazan N. G. (1989) Membrane docosahexaenoic acid is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. USA 86, 2903–2907.PubMedCrossRefGoogle Scholar
  31. Seidelin K. N. (1995) Fatty acid composition of adipose tissue in humans. Implications for the dietary fat-serum cholesterol-CHD issue. Prog. Lipid Res. 34, 199–217.PubMedCrossRefGoogle Scholar
  32. Sheaff Greiner R. C., Zhang Q., Goodman K. J., Giussani D. A., Nathanielsz P. W., and Brenna J. T. (1996) Linoleate, α-linolenate, and docosahexaenoate recycling into saturated and monounsaturated fatty acids is a major pathway in pregnant or lactating adults and fetal or infant rhesus monkeys. J. Lipid Res. 37, 2675–2686.PubMedGoogle Scholar
  33. Spector A. A. (1986) Plasma albumin as a lipoprotein, in Biochemistry and Biology of Plasma Lipoproteins (Scanu, A. M. and Spector, A. A., eds.), Marcel Dekker, New York, NY, pp. 247–279.Google Scholar
  34. Spector A. A., Moore S. A., and Yorek M. A. (1999) Docosahexaenoic acid metabolism and function in the central nervous system: studies with cell culture model systems, in Essential Fatty Acids and Eicosanoids: Invited Papers from the Fourth International Symposium (Riemersma, R., Kelly, R. W. and Wilson, R., eds.), AOCS Press, Champaign, IL, pp. 16–18.Google Scholar
  35. Spector A. A. (1999) Essentiality of fatty acids. Lipids 34, S1-S3.PubMedCrossRefGoogle Scholar
  36. Washizaki K., Smith Q. R., Rapoport S. I., and Purdon A. D. (1994) Brain arachidonic acid incorporation and precursor pool specific activity during intravenous infusion of unesterified [3H]arachidonate in anesthetized rat. J. Neurochem. 63, 727–736.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  1. 1.Department of Biochemistry, 4-403 BSB, College of MedicineUniversity of IowaIowa City

Personalised recommendations