Journal of Molecular Neuroscience

, Volume 16, Issue 2–3, pp 117–121 | Cite as

Role of CD36 in membrane transport and utilization of long-chain fatty acids by different tissues

  • Chris T. Coburn
  • Tahar Hajri
  • Azeddine Ibrahimi
  • Nada A. Abumrad


The transmembrane glycoprotein CD36 has been identified in isolated cell studies as a putative transporter of long-chain fatty acids. To examine the physiological role of CD36, we studied FA uptake and metabolism by tissues of CD36 null mice after injection with two fatty acid analogs. Compared to controls, uptake was substantially reduced (50–80%) in heart, skeletal muscle, and adipose tissues of null mice. The reduction in uptake was associated with a large decrease in fatty acid incorporation into triglycerides, which could be accounted for by an accumulation of diacylglycerides. Thus CD36 facilitates a major fraction of fatty acid uptake by myocardial, skeletal muscle, and adipose tissues, where it is highly expressed. Its role in other tissues where its expression is low and cell-specific could not be determined in these studies.

Index Entries

CD36 FAT FA transport BMIPP IPPA heart adipose triglyceride 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abumrad N. A., Park J. H., and Park C. R. (1984) Permeation of long-chain fatty acid into adipocytes. Kinetics, specificity, and evidence for involvement of a membrane protein. J. Biol. Chem. 259, 8945–8953.PubMedGoogle Scholar
  2. Abumrad N. A., el-Maghrabi M. R., Amri E. Z., Lopez E., and Grimaldi P. A. (1993) Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J. Biol. Chem. 268, 17,665–17,668.Google Scholar
  3. Abumrad N., Harmon C., and Ibrahimi A. (1998) Membrane transport of long-chain fatty acids: evidence for a facilitated process. J. Lipid Res. 39, 2309–2318.PubMedGoogle Scholar
  4. Abumrad N., Coburn C., and Ibrahimi A. (1999) Membrane proteins implicated in long-chain fatty acid uptake by mammalian cells: CD36, FATP and FABPm. Biochim. Biophys. Acta 1441, 4–13.PubMedGoogle Scholar
  5. Aitman T. J., Glazier A. M., Wallace C. A., Cooper L. D., Norsworthy P. J., Wahid F. N., et al. (1999) Identification of CD36 (FAT) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nature Genet. 21, 76–83.PubMedCrossRefGoogle Scholar
  6. Amri E. Z., Bonino F., Ailhaud G., Abumrad N. A., and Grimaldi P. A. (1995) Cloning of a protein that mediates transcriptional effects of fatty acids in preadipocytes. Homology to peroxisome proliferator-activated receptors. J. Biol. Chem. 270, 2367–2371.PubMedCrossRefGoogle Scholar
  7. Auestad N., Korsak R. A., Morrow J. W., and Edmond J. (1991) Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J. Neurochem. 56, 1376–1386.PubMedCrossRefGoogle Scholar
  8. Balendiran G. K., Schnutgen F., Scapin G., Borchers T., Xhong N., Lim K., et al. (2000) Crystal structure and thermodynamic analysis of human brain fatty acid binding protein. J. Biol. Chem., in press.Google Scholar
  9. Bonen A., Dyck D. J., Ibrahimi A., and Abumrad N. A. (1999) Muscle contractile activity increases fatty acid metabolism and transport and FAT/CD36. Am. J. Physiol. 276, E642-E649.PubMedGoogle Scholar
  10. Bonen A., Luiken J. J., Arumugam Y., Glatz J. F., and Tandon N. N. (2000) Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J. Biol. Chem. 275, 14,501–14,508.CrossRefGoogle Scholar
  11. Coburn C. T., Knapp Jr. F. F., Febbraio M., Beets A. L., Silverstein R. L., and Abumrad N. A. (2000) Defective uptake and utilization of long-chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J. Biol. Chem., 275, 32,523–32,529.CrossRefGoogle Scholar
  12. Febbraio M., Abumrad N. A., Hajjar D. P., Sharma K., Cheng W., Pearce S. F., and Silverstein R. L. (1999) A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J. Biol. Chem. 274, 19,055–19,062.CrossRefGoogle Scholar
  13. Greenwalt D. E., Lipsky R. H., Ockenhouse C. F., Ikeda H., Tandon N. N., and Jamieson G. A. (1992) Membrane glycoprotein CD36: a review of its roles in adherence, signal transduction, and transfusion medicine. Blood 80, 1105–1115.PubMedGoogle Scholar
  14. Harmon C. M. and Abumrad N. A. (1993) Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. J. Membr. Biol. 133, 43–49.PubMedGoogle Scholar
  15. Heuckeroth R. O., Birkenmeier E. H., Levin M. S., and Gordon J. I. (1987) Analysis of the tissue-specific expression, developmental regulation, and linkage relationships of a rodent gene encoding heart fatty acid binding protein. J. Biol. Chem. 262, 9709–9717.PubMedGoogle Scholar
  16. Hirsch D., Stahl A., and Lodish H. F. (1998) A family of fatty acid transporters conserved from mycobacterium to man. Proc. Natl. Acad. Sci. USA 95, 8625–8629.PubMedCrossRefGoogle Scholar
  17. Hwang E. H., Taki J., Yasue S., Fujimoto M., Taniguchi M., Matsunari I., et al. (1998) Absent myocardial iodine-123-BMIPP uptake and platelet/monocyte CD36 deficiency. J. Nucleic Med. 39, 1681–1684.Google Scholar
  18. Ibrahimi A., Sfeir Z., Magharaie H., Amri E. Z., Grimaldi P., and Abumrad N. A. (1996) Expression of the CD36 homolog (FAT) in fibroblast cells: effects on fatty acid transport. Proc. Natl. Acad. Sci. USA 93, 2646–2651.PubMedCrossRefGoogle Scholar
  19. Ibrahimi A., Bonen A., Blinn W. D., Hajri T., Li X., Zhong K., Cameron R., and Abumrad N. A. (1999) Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J. Biol. Chem. 274, 26,761–26,766.CrossRefGoogle Scholar
  20. Knapp Jr. F. F., Ambrose K. R., and Goodman M. M. (1986) New radioiodinated methyl-branched fatty acids for cardiac studies. Eur. J. Nucleic Med. 12(Suppl.), S39-S44.CrossRefGoogle Scholar
  21. Poirier H., Degrace P., Niot I., Bernard A., and Besnard P. (1996) Localization and regulation of the putative membrane fatty-acid transporter (FAT) in the small intestine. Comparison with fatty acid-binding proteins (FABP). Eur. J. Biochem. 238, 368–373.PubMedCrossRefGoogle Scholar
  22. Pravenec M., Zidek V., Simakova M., Kren V., Krenova D., Horky K., et al. (1999) Genetics of Cd36 and the clustering of multiple cardiovascular risk factors in spontaneous hypertension. J. Clin. Invest. 103, 1651–1657.PubMedCrossRefGoogle Scholar
  23. Richieri G. V. and Kleinfeld A. M. (1995) Unbound free fatty acid levels in human serum. J. Lipid Res. 36, 229–240.PubMedGoogle Scholar
  24. Richieri G. V., Ogata R. T., Zimmerman A. W., Veerkamp J. H., and Kleinfeld A. M. (2000) Fatty acid binding proteins from different tissues show distinct patterns of fatty acid interactions. Biochemistry 39, 7197–7204.PubMedCrossRefGoogle Scholar
  25. Schaffer J. E. and Lodish H. F. (1994) Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79, 427–436.PubMedCrossRefGoogle Scholar
  26. Spitsberg V. L., Matitashvili E., and Gorewit R. C. (1995) Association and coexpression of fatty-acid-binding protein and glycoprotein CD36 in the bovine mammary gland. Eur. J. Biochem. 230, 872–878.PubMedCrossRefGoogle Scholar
  27. Stump D. D., Zhou S. L., and Berk P. D. (1993) Comparison of plasma membrane FABP and mitochondrial isoform of aspartate aminotransferase from rat liver. Am. J. Physiol. 265, G894-G902.PubMedGoogle Scholar
  28. Tontonoz P. and Nagy L. (1999) Regulation of macrophage gene expression by peroxisome-proliferator-activated receptor gamma: implications for cardiovascular disease. Curr. Opin. Lipidol. 10, 485–490.PubMedCrossRefGoogle Scholar
  29. van der Lee K. A., Vork M. M., De Vries J. E., Willemsen, P. H. Glatz J. F., Reneman R. S., et al. (2000) Long-chain fatty acid-induced changes in gene expression in neonatal cardiac myocytes. J. Lipid Res. 41, 41–47.PubMedGoogle Scholar
  30. Watanabe K., Ohta Y., Toba K., Ogawa Y., Hanawa H., Hirokawa Y., et al. (1998) Myocardial CD36 expression and fatty acid accumulation in patients with type I and II CD36 deficiency. Ann. Nucleic Med. 12, 261–266.CrossRefGoogle Scholar
  31. Yoshizumi T., Nozaki S., Fukuchi K., Yamasaki K., Fukuchi T., Maruyama T., et al. (2000) Pharmacokinetics and metabolism of 123I-BMIPP fatty acid analog in healthy and CD36-deficient subjects [In Process Citation]. J. Nucleic Med. 41, 1134–1138.Google Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  • Chris T. Coburn
    • 1
  • Tahar Hajri
    • 1
  • Azeddine Ibrahimi
    • 1
  • Nada A. Abumrad
    • 1
  1. 1.Departments of Physiology and BiophysicsState University of New York at Stony BrookNY

Personalised recommendations