Advertisement

Journal of Molecular Neuroscience

, Volume 15, Issue 2, pp 61–69 | Cite as

Canavan’s spongiform leukodystrophy

A clinical anatomy of a genetic metabolic CNS disease
  • Morris H. Baslow
Review Article

Abstract

Canavan disease (CD) is a globally distributed early-onset leukodystrophy. It is genetic in nature, and results from an autosomally inherited recessive trait that is characterized by loss of the axon’s myelin sheath while leaving the axons intact, and spongiform degeneration especially in white matter. There is also a buildup of N-acetyl-l-aspartate (NAA) in brain, as well as NAA acidemia and NAA aciduria. The cause of the altered NAA metabolism has been traced to several mutations in the gene for the production of aspartoacylase, located on chromosome 17, which is the primary enzyme involved in the catabolic metabolism of NAA. In this review, an attempt is made to correlate the change in NAA metabolism that results from the genetic defects in CD with the processes involved in the development of the CD syndrome. In addition, present efforts to counter the results of the genetic defects in this disease are also considered.

Index Entries

Aspartoacylase astrocytes brain canavan disease leukodystrophy N-acetylaspartate oligodendrocytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi M. and Volk B. W. (1968) Protracted form of spongy degeneration of the central nervous system. Neurology 18, 1084–1092.PubMedGoogle Scholar
  2. Adornato B. T., O’Brien J. S., Lampert P. W., Roe T. F. and Neustein H. B. (1972) Cerebral spongy degeneration of infancy. A biochemical and ultrastructural study of affected twins. Neurology 22, 202–210.PubMedGoogle Scholar
  3. Baslow M. H. (1999a) The existence of molecular water pumps in the nervous system. A review of the evidence. Neurochem. Int. 34, 77–90.PubMedCrossRefGoogle Scholar
  4. Baslow M. H. (1999b) Molecular water pumps and the etiology of Canavan disease; a case of the sorcerer’s apprentice. J. Inherit. Metabol. Dis. 22, 99–101.CrossRefGoogle Scholar
  5. Baslow M. H. (2000) Functions of N-acetyl-L-aspartate and N-acetyl-Laspartylglutamate in the vertebrate brain: role in glial cell-specific signaling. J. Neurochem. 75, 453–459.PubMedCrossRefGoogle Scholar
  6. Baslow M. H. and Resnik T. R. (1997) Canavan disease: Analysis of the nature of the metabolic lesions responsible for development of the observed clinical symptoms. J. Mol. Neurosci. 9(2), 109–126.PubMedCrossRefGoogle Scholar
  7. Baslow M. H., Suckow R., Sapirstein V., and Hungund, B. L. (1999) Expression of aspartoacylase activity in cultured rat macroglial cells is limited to oligodendrocytes. J. Mol. Neurosci. 13(1–2), 47–53.PubMedCrossRefGoogle Scholar
  8. Baslow M. H., Suckow R. F., and Hungund B. L., (2000) Effects of ethanol and of alcohol dehydrogenase inhibitors on the reduction of N-acetylaspartate levels of brain in mice in vivo: A search for substances that may have therapeutic value in the treatment of Canavan disease, an autosomally inherited recessive CNS disease. J. Inher. Metal. Dis. 23(7), 684–692.CrossRefGoogle Scholar
  9. Bates T. E., Strangward M., Keelan J., Davey G. P., Munro P. M. G., and Clark J. B. (1996) Inhibition of N-acetylaspartate production: implications for 1 H MRS studies in vivo. NeuroReport 7, 1397–1400.PubMedCrossRefGoogle Scholar
  10. Birnbaum S. M., Levintow L., Kingsley R. B., and Greenstein J. P. (1952) Specificity of amino acid acylases. J. Biol. Chem. 194, 455–462.PubMedGoogle Scholar
  11. Brustle O., Jones K. N., Learish R. D., Karram K., Choudhary K., Wiestler O. D., et al. (1999) Embryonic stem cell-derived glial precursors: A source of myelinating transplants. Science 285, 754–756.PubMedCrossRefGoogle Scholar
  12. Burlina A. P., Ferrari V., Divry P., Gradowska W., Jakobs C., Bennett M. J., et al. (1999) N-acetyl-aspartylglutamate in Canavan disease: an adverse effector? Eur. J. Pediatr. 158, 406–409.PubMedCrossRefGoogle Scholar
  13. Canavan M. M. (1931) Schilders encephalitis periaxialis diffusa. Report of a case in a child aged sixteen and one-half months. Arch. Neurol. Psychiat. 25, 299–308.Google Scholar
  14. Einheber S., Zanazzi G., Ching W., Scherer S., Milner T. A., Peles E., and Salzer J. L. (1997) The axonal membrane protein Caspr, a homologue of Neurexin IV, is a component of the septate-like paranodal junctions that assemble during myelination. J. Cell Biol. 139(6), 1495–1506.PubMedCrossRefGoogle Scholar
  15. Elpeleg O. N. and Shaag A. (1999) The spectrum of mutations of the aspartoacylase gene in Canavan disease in non-Jewish patients. J. Inher. Metab. Dis. 22, 531–534.PubMedCrossRefGoogle Scholar
  16. Faull K. F., Rafie R., Pascoe N., Marsh L., and Pfefferbaum A. (1999) N-Acetyl aspartic acid (NAA) and N-acetyl aspartylglutamic acid (NAAG) in human ventricular, subarachnoid, and lumbar cerebrospinal fluid. Neurochem. Res. 24(10), 1249–1261.PubMedCrossRefGoogle Scholar
  17. Goldstein F. B. (1976) Amidohydrolases of brain; Enzymatic hydrolysis of N-acetyl-l-aspartate and other N-acyl-l-amino acids. J. Neurochem. 26, 45–49.PubMedCrossRefGoogle Scholar
  18. Hagenfeldt L., Bollgren I., and Venizelos N. (1987) N-acetylaspartic aciduria due to aspartoacylase deficiency—a new aetiology of childhood leukodystrophy. J. Inher. Metab. Dis. 10, 135–141.PubMedCrossRefGoogle Scholar
  19. Huang W., Wang H., Kekuda R., Fei Y., Friedrich A., Wang J., et al. (2000) Transport of N-acetylaspartate by Na+-dependent high-affinity dicarboxylate transporter NaDC3 and its relevance to the expression of the transporter in the brain. J. Pharmacol. Exp. Therapeut. 295 (1), 392–403.Google Scholar
  20. Kaul R., Casanova J., Johnson A. B., Tang P., and Matalon R. (1991) Purification, characterization, and localization of aspartoacylase from bovine brain. J. Neurochem. 56, 129–135.PubMedCrossRefGoogle Scholar
  21. Kaul R., Gao G. P., Balamurugan K., and Matalon R. (1993) Cloning of the human aspartoacylase cDNA and a common mis-sense mutation in Canavan disease. Nature Genet. 5, 118–123.PubMedCrossRefGoogle Scholar
  22. Kaul R., Gao G. P., Aloya M., Balamurugan K., Petrosky A., Michals K., and Matalon R. (1994) Canavan disease: mutations among Jewish and non-Jewish patients. Am. J. Hum. Genet. 55, 34–41.PubMedGoogle Scholar
  23. Kinzley H. (1967) The enzymatic synthesis of N-acetyl-l-aspartic acid by a water-insoluble preparation of a cat brain acetone powder. J. Biol. Chem. 242, 4619–4622.Google Scholar
  24. Kvittingen E. A., Guldal G., Borsting S., Skalpe I. O., Stokke O., and Jellum E. (1986) N-Acetylaspartic aciduria in a child with a progressive cerebral atrophy. Clin. Chim. Acta 158, 217–227.PubMedCrossRefGoogle Scholar
  25. Leone P., Janson C. G., McFhee S. J., and During M. J. (1999) Global CNS gene transfer for a childhood neurogenetic enzyme deficiency: Canavan disease. Curr. Opin. Mol. Therap. 1(4), 487–492.Google Scholar
  26. Matalon R. (1997) Canavan disease: diagnosis and molecular analysis. Genet. Testing 1(1), 21–25.Google Scholar
  27. Matalon R., Michals K., Sebasta D., Deanching M., Gashkoff P., and Casanova J. (1988) Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am. J. Med. Genet. 29, 463–471.PubMedCrossRefGoogle Scholar
  28. Matalon R. and Michals-Matalon K. (1999a) Biochemistry and molecular biology of Canavan disease. Neurochem. Res. 24(4), 507–513.PubMedCrossRefGoogle Scholar
  29. Matalon R. and Michals-Matalon K. (1999b) Recent advances in Canavan disease. Adv. Pediatr. 46, 493–506.PubMedGoogle Scholar
  30. Mehta V. and Namboodiri M. A. A. (1995) N-Acetylaspartate as an acetyl source in the nervous system. Mol. Brain Res. 31, 151–157.PubMedCrossRefGoogle Scholar
  31. Sager T. N., Fink-Jensen A., and Hansen A. J. (1997) Transient elevation of interstitial N-acetylaspartate in reversible global brain ischemia. J. Neurochem. 68, 675–682.PubMedCrossRefGoogle Scholar
  32. Sager T. N., Thomsen C., Valsborg J. S., Laursen H., and Hansen A. J. (1999) Astroglia contain a specific transport mechanism for N-acetyl-l-aspartate. J. Neurochem. 73, 807–811.PubMedCrossRefGoogle Scholar
  33. Shinar Y., Solomon S., Brenner T., McMorris F. A., Yatziv S., and Barash V. (1995) Aspartoacylase activity in rat glial cultures: correlation with 2′,3′-cyclic nucleotide 3′-phosphodiesterase activity. J. Neurochem. 64 (suppl.), S 12 C.Google Scholar
  34. Sugahara K., Jianying Z., and Kodama H. (1994) Liquid chromatographic-mass spectrometric analysis of N-acetylamino acids in human urine. J. Chromatog. B 657, 15–21.Google Scholar
  35. Tallan H. H., Moore S., and Stein W. H. (1956) N-Acetyl-l-aspartic acid in brain. J. Biol. Chem. 224, 41–45.Google Scholar
  36. Taylor D. L., Davies S. E. C., Obrenovitch T. P., Urenjak J., Richards D. A., Clark J. B., and Symon L. (1994) Extracellular N-acetylaspartate in the rat brain. In vivo determination of basal levels and changes evoked by high K+. J. Neurochem. 62, 2349–2355.PubMedCrossRefGoogle Scholar
  37. Traeger E. C. and Rapin I. (1998) The clinical course of Canavan disease. Pediatr. Neurol. 18, 207–212.PubMedCrossRefGoogle Scholar
  38. Wolman M. (1958) The spongy type of diffuse sclerosis. Brain 81, 243–247.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  1. 1.Nathan S. Kline Institute for Psychiatric ResearchCenter for NeurochemistryOrangeburg

Personalised recommendations