Journal of Molecular Neuroscience

, Volume 15, Issue 1, pp 45–59 | Cite as

Regional hypomyelination and dysplasia in transgenic mice with astrocyte-directed expression of interferon-γ

  • Frank M. LaFerla
  • Michael C. Sugarman
  • Thomas E. Lane
  • Malcolm A. Leissring
Article

Abstract

Interferon-gamma (IFN-γ), traditionally associated with a variety of physiological and pathological processes of the immune system, manifests an array of biological effects on cells of the nervous system. Clinical and in vitro studies support a key role for IFN-γ in the pathogenesis of immune-mediated demyelinating disorders such as multiple sclerosis (MS). To investigate the role of this cytokine within the central nervous system (CNS), transgenic mice were derived in which IFN-γ transgene expression was selectively targeted to astrocytes, a potentially important cellular source of this cytokine. Here we report that astrocyte-directed expression of IFN-γ results in regional hypomyelination and selective disruption of brain histogenesis, which included severe cerebellar and hippocampal dysplasia. Transgenic mice were markedly ataxic and the majority died prior to reaching sexual maturity. This study demonstrates that astrocyte-directed expression of IFN-γ profoundly affects the differentiation and morphogenesis of the brain and provides additional evidence that this cytokine has deleterious consequences on myelin-producing cells, independent of the cellular source.

Index Entries

Astrocytes cytokines hypomyelination interferon-gamma transgenic mice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barish M. E., Mandsorf N. B., and Raissdana S. S. (1991) γ-interferon promotes differentiation of cultured cortical and hippocampal neurons. Dev. Biol. 144, 412–423.PubMedCrossRefGoogle Scholar
  2. Barres B. A., Hart I. K., Coles H. S., Burne J. F., Voyvodic J. T., Richardson W. D., and Raff, M. C. (1992) Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70, 31–46.PubMedCrossRefGoogle Scholar
  3. Beck J., Rondot P., Catinot L., Falcoff E., Kirchner H., and Wietzerbin, J. (1988) Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol. Scand. 78, 318–323.PubMedCrossRefGoogle Scholar
  4. Benveniste E. N. (1998) Cytokine actions in the central nervous system. Cytokine Growth Factor Rev. 9, 259–275.PubMedCrossRefGoogle Scholar
  5. Benveniste E. N. and Benos D. J. (1995) TNF-alpha- and IFN-gamma-mediated signal transduction pathways: effects on glial cell gene expression and function. FASEB J. 9, 1577–1584.PubMedGoogle Scholar
  6. Brenner M., Kisseberth W. C., Su Y., Besnard F., and Messing A. (1994) GFAP promoter directs astrocyte-specific expression in transgenic mice. J. Neurosci. 14, 1030–1037.PubMedGoogle Scholar
  7. Brinster R. L., Chen H. Y., Trumbauer M. E., Yagle M. K., and Palmiter R. D. (1985) Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc. Natl. Acad. Sci. USA 82, 4438–4442.PubMedCrossRefGoogle Scholar
  8. Chang J. Y., Martin D. P., and Johnson E. M., Jr. (1990) Interferon suppresses sympathetic neuronal cell death caused by nerve growth factor deprivation. J. Neurochem. 55, 436–445.PubMedCrossRefGoogle Scholar
  9. Charriaut-Marlangue C. and Ben-Ari Y. (1995) A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport 7, 61–64.PubMedGoogle Scholar
  10. Chomczynski P. and Sacchi N. (1987) Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.PubMedCrossRefGoogle Scholar
  11. Cofano F., Landolfo Appella E., and Ullrich S. J. (1989) Analysis of murine interferon-γ binding to its receptor on intact cells and solubilized membranes. FEBS Lett. 342, 233–236.CrossRefGoogle Scholar
  12. Corbin J. G., Kelly D., Rath E. M., Baerwald K. D., Suzuki K., and Popko B. (1996) Targeted CNS expression of interferon-gamma in transgenic mice leads to hypomyelination, reactive gliosis, and abnormal cerebellar development. Mol. Cell Neurosci. 7, 354–370.PubMedCrossRefGoogle Scholar
  13. Crompton T., Peitsch M. C., MacDonald H. R., and Tschopp J. (1992) Propidium iodide staining correlates with the extent of DNA degradation in isolated nuclei. Biochem. Biophys. Res. Commun. 183, 532–537.PubMedCrossRefGoogle Scholar
  14. Egwuagu C. E., Sztein J., Chan C. C., Reid W., Mahdi R., Nussenblatt R. B., and Chepelinsky A. B. (1994) Ectopic expression of gamma interferon in the eyes of transgenic mice induces ocular pathology and MHC class II gene expression. Invest. Ophthalmol. Visual Sci. 35, 332–340.Google Scholar
  15. Gavrieli Y., Sherman Y., and Ben-Sasson S. A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501.PubMedCrossRefGoogle Scholar
  16. Goldowitz D. and Hamre K. (1998) The cells and molecules that make a cerebellum. Trends Neurosci. 21, 375–382.PubMedCrossRefGoogle Scholar
  17. Hobbs M. V. et al. (1993) Patterns of cytokine gene expression by CD4+ T cells from young and old mice. J. Immunol. 150, 3602–3614.PubMedGoogle Scholar
  18. Horwitz M. S., Evans, C. F., McGavern, D. B., Rodriguez M., and Oldstone M. B. (1997) Primary demyelination in transgenic mice expressing interferon-gamma. Nat. Med. 3, 1037–1041.PubMedCrossRefGoogle Scholar
  19. Jonakait G. M., Wei R., Sheng Z.-L., Hart R. P., and Ni L. (1994) Interferon-γ promotes cholinergic differentiation of embryonic septal nuclei. Neuron 12, 1149–1159.PubMedCrossRefGoogle Scholar
  20. LaFerla F. M., Tinkle B. T., Bieberich C. J., Haudenschild C. C., and Jay G. (1995) The Alzheimer’s Aβ peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat. Genet. 9, 21–30.PubMedCrossRefGoogle Scholar
  21. Landry C. F., Ivy G. O., and Brown I. R. (1990) Developmental expression of glial fibrillary acidic protein mRNA in the rat brain analyzed by in situ hybridization. J. Neurosci. Res. 25, 194–203.PubMedCrossRefGoogle Scholar
  22. Lane T. E., Asensio V. C., Yu N., Paoletti A. D., Campbell I. L., and Buchmeier M. J. (1998) Dynamic regulation of alpha- and beta-chemokine expression in the central nervous system during mouse hepatitis virus-induced demyelinating disease. J. Immunol. 160, 970–978.PubMedGoogle Scholar
  23. Lewis S. A., Balcarek J. M., Krek V., Shelanski M., and Cowan N. J. (1984) Sequence of a cDNA clone encoding mouse glial fibrillary acidic protein: structural conservation of intermediate filaments. Proc. Natl. Acad. Sci. USA 81, 2743–2746.PubMedCrossRefGoogle Scholar
  24. Ljungdahl A., Olsson T., van der Meide P. H., Holmdah, R., Klareskog L., and Hojeberg B. (1989) Interferon-gamma like immunoreactivity in certain neurons of the central and peripheral nervous system. J. Neurosci. Res. 24, 451–456.PubMedCrossRefGoogle Scholar
  25. Maimone D., Gregory S., Arnason B. G., and Reder A. T. (1991) Cytokine levels in the cerebrospinal fluid and serum of patients with multiple sclerosis. J. Neuroimmunol. 32, 67–74.PubMedCrossRefGoogle Scholar
  26. Majno G. and Joris I. (1995) Apoptosis, oncosis, and necrosis: an overview of cell death. Am. J. Pathol. 146, 3–15.PubMedGoogle Scholar
  27. Mehler M. F. and Kessler J. A. (1998) Cytokines in brain development and function. Adv. Protein Chem. 52, 223–251.PubMedCrossRefGoogle Scholar
  28. Morganti-Kossmann M. C., Kossmann T., and Wahl S. M. (1992) Cytokines and neuropathology. TiPS 13, 286–291.PubMedGoogle Scholar
  29. Mucke L., Oldstone M. B., Morris J. C., and Nerenberg M. I. (1991) Rapid activation of astrocytespecific expression of GFAP-lacZ transgene by focal injury. New Biol. 3, 465–474.PubMedGoogle Scholar
  30. Olsson T. (1992) Cytokines in neuroinflammatory disease: role of myelin autoreactive T cell production of interferon-gamma. J. Neuroimmunol. 40, 211–218.PubMedCrossRefGoogle Scholar
  31. Olsson T., et al. (1990) Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-gamma. J. Clin. Invest. 86, 981–985.PubMedGoogle Scholar
  32. Panitch H. S., Hirsch R. L., Schindler J., and Johnson, K. P. (1987) Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37, 1097–1102.PubMedGoogle Scholar
  33. Rubio N. and deFelipe C. (1991) Demonstration of the presence of a specific interferon-γ receptor on murine astrocyte cell surface. J. Neuroimmunol. 35, 111–117.PubMedCrossRefGoogle Scholar
  34. Salonen R. (1983) CSF and serum interferon in multiple sclerosis: longitudinal study. Neurology 33, 1604–1606.PubMedGoogle Scholar
  35. Sarvetnick N., Liggitt D., Pitts S. L., Hansen S. E., and Stewart T. A. (1988) Insulin-dependent diabetes mellitus induced in transgenic mice by ectopic expression of class II MHC and interferon-gamma. Cell 52, 773–782.PubMedCrossRefGoogle Scholar
  36. Schmidt B., Stoll G., Toyka K. V., and Hartung H.-P. (1990) Rat astrocytes express interferon-γ immunoreactivity in normal optic nerve and after nerve transection. Brain Res. 515, 347–350.PubMedCrossRefGoogle Scholar
  37. Schneider-Schaulies J., Kirchhoff F., Archelos J., and Schachner M. (1991) Down-regulation of myelin-associated glycoprotein on Schwann cells by interferon-γ and tumor necrosis factor-α affects neurite outgrowth. Neuron 7, 995–1005.PubMedCrossRefGoogle Scholar
  38. Tedeschi B., Barrett J. N., and Keane R. W. (1986) Astrocytes produce interferon that enhances the expression of H-2 antigens on a subpopulation of brain cells. J. Cell Biol. 102, 2244–2253.PubMedCrossRefGoogle Scholar
  39. Traugott U. and Lebon P. (1988) Multiple sclerosis: involvement of interferons in lesion pathogenesis. Ann. Neurol. 24, 243–251.PubMedCrossRefGoogle Scholar
  40. Turnley A. M., Miller J. F. A. P., and Bartlett P. F. (1991) Regulation of MHC molecules on MBP positive oligodendrocytes in mice by IFN-γ and TNF-α. Neurosci. Letts. 123, 45–48.CrossRefGoogle Scholar
  41. Vartanian T., Li Y., Zhao M., and Stefansson K. (1995) Interferon-gamma-induced oligodendrocyte cell death: implications for the pathogenesis of multiple sclerosis. Mol. Med. 1, 732–743.PubMedGoogle Scholar
  42. Watanabe Y., Kuribayashi K., Miyatake S., Nishihara K., Nakayama E., Taniyama T., and Sakata T. (1989) Exogenous expression of mouse interferon γ cDNA in mouse neuroblastoma C1300 cells results in reduced tumorigenicity by augmented anti-tumor immunity. Proc. Natl. Acad. Sci. USA 86, 9456–9460.PubMedCrossRefGoogle Scholar
  43. Woodroofe M. N. and Cuzner M. L. (1993) Cytokine mRNA expression in inflammatory multiple sclerosis lesions: detection by non-radioactive in situ hybridization. Cytokine 5, 583–588.PubMedCrossRefGoogle Scholar
  44. Yong V. M., Moumdjian R., Young F. P., Ruijs T. C. G., Freedman M. S., Cashman N., and Antel J. P. (1991) γ-Interferon promotes proliferation of adult human astrocytes in vitro and reactive gliosis in the adult mouse brain in vivo. Proc. Natl. Acad. Sci. USA 88, 7016–7020.PubMedCrossRefGoogle Scholar
  45. Young V. M., Tejada-Berges T., Goodyer C. G., Antel J. P., and Young F. P. (1992) Differential proliferative response of human and mouse astrocytes to gamma-interferon. Glia 6, 269–280.CrossRefGoogle Scholar
  46. Zhao B. and Schwartz J. P. (1998) Involvement of cytokines in normal CNS development and neurological diseases: recent progress and perspectives. J. Neurosci. Res. 52, 7–16.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  • Frank M. LaFerla
    • 1
  • Michael C. Sugarman
    • 1
  • Thomas E. Lane
    • 2
  • Malcolm A. Leissring
    • 1
  1. 1.Department of Neurobiology and BehaviorUniversity of California, IrvineIrvine
  2. 2.Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvine

Personalised recommendations