Journal of Molecular Neuroscience

, Volume 14, Issue 3, pp 175–182

Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth

  • Mark P. Mattson
  • Robert C. Haddon
  • Apparao M. Rao


Carbon nanotubes are strong, flexible, conduct electrical current, and can be functionalized with different molecules, properties that may be useful in basic and applied neuroscience research. We report the first application of carbon nanotube technology to neuroscience research. Methods were developed for growing embryonic rat-brain neurons on multiwalled carbon nanotubes. On unmodified nanotubes, neurons extend only one or two neurites, which exhibit very few branches. In contrast, neurons grown on nanotubes coated with the bioactive molecule 4-hydroxynonenal elaborate multiple neurites, which exhibit extensive branching. These findings establish the feasability of using nanotubes as substrates for nerve cell growth and as probes of neuronal function at the nanometer scale.

Index Entries

Brain growth cones, hippocampus hydroxynonenal nanotechnology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews R., Jacques D., Rao A. M., Derbyshire F., Qian D., Fan X., et al. (1999) Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem. Phys. Lett. 303, 467.CrossRefGoogle Scholar
  2. Carini R., Bellomo G., Paradisi L., Dianzani M. U., and Albano E. (1996) 4-Hydroxynonental triggers Ca2+ influx in isolated rat hepatocytes. Biochem. Biophys. Res. Commun. 18, 772–776.CrossRefGoogle Scholar
  3. Chen J., Hamon M. A., Hu H., Chen Y., Rao A. M., Eklund P. C., and Haddon R. C. (1998) Solution properties of single-walled carbon nanotubes. Science 282, 95–98.PubMedCrossRefGoogle Scholar
  4. Esterbauer H., Schaur R. J., and Zollner H. (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad. Biol. Med. 11, 81–128.PubMedCrossRefGoogle Scholar
  5. Fan S., Chapline M. G., Franklin N. R., Tombler T. W., Cassell A. M., and Dai H. (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512–514.PubMedCrossRefGoogle Scholar
  6. Goodman C. S. (1996) Mechanisms and molecules that control growth cone guidance. Annu. Rev. Neurosci. 19, 341–377.PubMedCrossRefGoogle Scholar
  7. Hamon M. A., Chen J., Hu H., Chen Y., Rao A. M., Eklund P. C., and Haddon R. C. (1999) Dissolution of single-walled carbon nanotubes. Adv. Mater. 11, 834–840.CrossRefGoogle Scholar
  8. Journet C., Maser W. K., Bernier P., Loiseau A., Lamy de la Chapelle M., Lefrant S., et al. (1997) Large scale production of single wall carbon nanotubes by the electric arc technique. Nature 388, 756–758.CrossRefGoogle Scholar
  9. Kater S. B., Mattson M. P., Cohan C., and Connor J. (1988) Calcium regulation of the neuronal growth cone. Trends Neurosci. 11, 315–321.PubMedCrossRefGoogle Scholar
  10. Lustgarten J. H., Proctor M., Haroun R. I., Avellino A. M., Pindzola A. A., and Kliot M. (1991) Semipermeable polymer tubes provide a microenvironment for in vivo analysis of dorsal root regeneration. J. Biomech. Eng. 113, 184–188.PubMedGoogle Scholar
  11. Mark R. J., Lovell M. A., Markesbery W. R., Uchida K., and Mattson M. P. (1997) A role for 4-hydroxynonenal in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J. Neurochem. 68, 255–264.PubMedCrossRefGoogle Scholar
  12. Mattson M. P. (1988) Neurotransmitters in the regulation of neuronal cytoarchitecture. Brain Res. Rev. 13, 179–212.CrossRefGoogle Scholar
  13. Mattson M. P. and Kater S. B. (1987) Calcium regulation of neurite elongation and growth cone motility. J. Neurosci. 7, 4034–4043.PubMedGoogle Scholar
  14. Mattson M. P. and Kater S. B. (1988) Intracellular messengers in the generation and degeneration of hippo-campal neuroarchitecture. J. Neurosci. Res. 21, 447–464.PubMedCrossRefGoogle Scholar
  15. Mattson M. P., Dou P., and Kater S. B. (1988) Out-growth-regulating actions of glutamate in isolated hippo-campal pyramidal neurons. J. Neurosci. 8, 2087–2100.PubMedGoogle Scholar
  16. Mattson M. P., Fu W., Waeg G., and Uchida K. (1997) 4-hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. NeuroReport 8, 2275–2281.PubMedCrossRefGoogle Scholar
  17. Mattson M. P. and Partin J. (1999) Evidence for mitochondrial control of neuronal polarity. J. Neurosci. Res. 56, 8–20.PubMedCrossRefGoogle Scholar
  18. Rao A. M., Richter E., Bandow S., Chase B., Eklund P. C., Williams K. A., et al. (1997) Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275, 187–191.PubMedCrossRefGoogle Scholar
  19. Ren Z. F., Huang Z. P., Xu J. W., Wang J. H., Bush P., Siegal M. P., and Provencio P. N. (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107.PubMedCrossRefGoogle Scholar
  20. Song H. J. and Poo M. M. (1999) Signal transduction underlying growth cone guidance by diffusible factors. Curr. Opin. Neurobiol. 9, 355–363.PubMedCrossRefGoogle Scholar
  21. Suter D. M. and Forscher P. (1998) An emerging link between cytoskeletal dynamics and cell adhesion molecules in growth cone guidance. Curr. Opin. Neurobiol. 8, 106–116.PubMedCrossRefGoogle Scholar
  22. Tans S. J., Vershueren A. R. M., and Dekker C. (1998) Room temperature transistor based on a single carbon nanotube. Nature 393, 49–52.CrossRefGoogle Scholar
  23. Thess A., Lee R., Nikolaev P., Dai H., Petit P., Robert J., et al. (1996) Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487.PubMedCrossRefGoogle Scholar
  24. Uchida K. and Stadtman E. R. (1992) Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc. Natl. Acad. Sci. USA 89, 4544–4548.PubMedCrossRefGoogle Scholar
  25. Waeg G., Dimsity G., and Esterbauer H. (1996) Monoclonal antibodies for detection of 4-hydroxynonenal modified proteins. Free Rad. Res. 25, 149–159.CrossRefGoogle Scholar
  26. Wong E. W., Sheehan P. E., and Lieber C. M. (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975.CrossRefGoogle Scholar
  27. Wong S. S., Joselevich E., Woolley A. T., Caung C. L., and Lieber C. M. (1998) Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52–55.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  • Mark P. Mattson
    • 1
    • 2
  • Robert C. Haddon
    • 3
  • Apparao M. Rao
    • 4
  1. 1.Sanders-Brown Research Center on Aging and Department of Anatomy and NeurobiologyUniversity of KentuckyLexington
  2. 2.Laboratory of NeurosciencesNational Institute on AgingBaltimore
  3. 3.Department of Chemistry and PhysicsUniversity of KentuckyLexington
  4. 4.Center for Applied Energy Research and Department of Physics and AstronomyUniversity of KentuckyLexington

Personalised recommendations