Journal of Molecular Neuroscience

, Volume 14, Issue 1–2, pp 61–68

A new concept in the pharmacology of neuroprotection

Article

Abstract

Vasoactive intestinal peptide (VIP), originally discovered in the intestine as a peptide of 28 amino acids, was later found to be a major brain peptide having neuroprotective activities. To exert neuroprotective activity, VIP requires glial cells secreting neuroprotective proteins. Activity-dependent neurotrophic factor (ADNF) is a recently isolated factor secreted by glial cells under the action of VIP. This protein, isolated by sequential chromatographic methods, was named activity-dependent neurotrophic factor since it protected neurons from death associated with blockade of electrical activity. A fourteen-amino-acid fragment of ADNF (ADNF-14) and the more potent, nine-amino-acid derivative (ADNF-9), exhibit activity that surpasses that of the parent protein with regard to potency and a broader range of effective concentration. Furthermore, the peptides exhibit protective activity in Alzheimer’s disease-related systems (e.g., β-amyloid toxicity and apolipoprotein E deficiencies, genes that have been associated with Alzheimer’s disease onset and progression). ADNP is another glial mediator of VIP-associated neuroprotection. NAP, an eight-amino-acid peptide derived from ADNP (sharing structural and functional similarities with ADNF-9), was identified as the most potent neuroprotectant described to-date in an animal model of apolipoprotein E-deficiency (knock-out mice). These femtomolar-acting peptides form a basis for a new concept in pharmacology: femtomolar neuroprotection.

Index Entries

Neuroprotection femtomolar activity-dependent VIP ADNF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agoston D. V., Eiden L. E., Brenneman D. E., and Gozes I. (1991) Spontaneous electrical activity regulates vasoactive intestinal peptide expression in dissociated spinal cord cell cultures. Mol. Brain Res. 10, 235–240.PubMedCrossRefGoogle Scholar
  2. Andersson H., Wetmore C., Lindqvist E., Luthman J., and Olson L. (1997) Trimethyltin exposure in the rat induces delayed changes in brain-derived neurotrophic factor, fos and heat shock protein 70. Neurotoxicology 18, 147–159.PubMedGoogle Scholar
  3. Arimura A., Somogyvari-Vigh A., Weill C., Fiore R. C., Tatsuno I., Bay V., and Brenneman D. E. (1994) PACAP functions as a neurotrophic factor. Ann. NY Acad. Sci. 739, 228–243PubMedCrossRefGoogle Scholar
  4. Ashur-Fabian O., Giladi E., Brenneman D. E., and Gozes I. (1997) Identification of VIP/PACAP receptors on astrocytes using antisense oligodeoxynucleotides. J. Mol. Neurosci. 9, 211–222.PubMedGoogle Scholar
  5. Bassan M., Zamostiano R., Davidson A., Wollman Y., Pitman J., Hauser J., et al. (1998) The identification of secreted heat shock 60 (hsp60)-like protein from rat glial cells and a human neuroblastoma cell line. Neurosci. Lett. 250, 37–40.PubMedCrossRefGoogle Scholar
  6. Bassan M., Zamostiano R., Davidson A., Pinhasov A., Giladi E., Perl O., et al. (1999) Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J. Neurochem. 72, 1283–1293.PubMedCrossRefGoogle Scholar
  7. Brenneman D. E. and Gozes I. (1996) A femtomolar-acting neuroprotective peptide. J. Clin. Invest. 97, 2299–2307.Google Scholar
  8. Brenneman D. E., Hill J. M., and Gozes I. (1998a) Vasoactive intestinal peptide in the central nervous system, Chapter 57, in Psychopharmacology on CD ROM (Watson, S. J., ed.), Lippincott Williams & Wilkins, Baltimore, MD.Google Scholar
  9. Brenneman D. E., Hauser J., Neale E., Rubinraut S., Fridkin M., Davidson A., and Gozes I. (1998b) Activity-dependent neurotrophic factor: structure-activity relationships of femtomolar-acting peptides. J. Pharmacol. Exp. Ther. 285, 619–627.PubMedGoogle Scholar
  10. Dibbern D. A., Glazner G. W., Gozes I., Brenneman D. E., and Hill J. M. (1997) Inhibition of murine embryonic growth by human immunodeficiency virus envelope protein and its prevention by vasoactive intestinal peptide and activity-dependent neurotrophic factor. J. Clin. Invest. 99, 2837–2841.PubMedGoogle Scholar
  11. Festoff B. W., Nelson P. G., Brenneman D. E. (1996) Prevention of activity-dependent neuronal death: vasoactive intestinal polypeptide stimulates astrocytes to secrete the thrombin-inhibiting neurotrophic serpin, protease nexin I. J. Neurobiol. 30, 255–266.CrossRefGoogle Scholar
  12. Ghosh A., Carnahan J., and Greenberg M. E. (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263, 1618–1623.PubMedCrossRefGoogle Scholar
  13. Gozes I. and Brenneman D. E. (1989) VIP molecular biology and neurobiological function. Mol. Neurobiol. 3, 201–236.PubMedGoogle Scholar
  14. Gozes I. and Brenneman D. E. (1996) Activity-dependent neurotrophic factor (ADNF): an extracellular neuroprotective chaperonin? J. Mol. Neurosci. 7, 235–244.Google Scholar
  15. Gozes I., Davidson A., Gozes Y., Mascolo R., Barth R., Warren D., et al. (1997a) Antiserum to activity-dependent neurotrophic factor produces neuronal cell death in CNS cultures: immunological and biological specificity. Dev. Brain Res. 99, 167–175.CrossRefGoogle Scholar
  16. Gozes I., Bachar M., Bardea A., Davidson A., Rubinraut S., Fridkin M., and Giladi E. (1997b) Protection against developmental retardation in apolipoprotein E-deficient mice by a fatty neuropeptide: implication for early treatment of Alzheimers disease. J. Neurobiol. 33, 329–342.PubMedCrossRefGoogle Scholar
  17. Gozes I., Perl O., Giladi E., Davidson A., Ashur-Fabian O., Rubinraut S., and Fridkin M. (1999) Mapping the active site in vasoactive intestinal peptide to a core of four amino acids: neuroprotective drug design. Proc. Natl. Acad. Sci. USA 96, 4143–4148.PubMedCrossRefGoogle Scholar
  18. Gressens P., Marret S., Hill J. M., Brenneman D. E., Gozes I., Fridkin M., and Evrard P. (1997) Vasoactive intestinal peptide prevents excitotoxic cell death in the murine developing brain. J. Clin. Invest. 100, 390–397.PubMedGoogle Scholar
  19. Guo Q., Sebastian L., Sopher B. L., Miller M. W., Glazner G. W., Ware C. B., et al. (1999) Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. Proc. Natl. Acad. Sci. USA 96, 4125–4130.PubMedCrossRefGoogle Scholar
  20. Harmar A. J., Arimura A., Gozes I., Journot L., Laburthe M., Pisegna J. R., et al. (1998) International Union of Pharmacology XVIII. Nomenclature of receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP). Pharmacol. Rev. 50, 265–270.PubMedGoogle Scholar
  21. Hashimoto H., Nogi H., Mori K., Ohishi H., Shigemoto R., Yamamoto K., et al. (1996) Distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide receptor in the rat brain: an in situ hybridization study. J. Comp. Neurol. 371, 567–577.CrossRefGoogle Scholar
  22. Hashimoto H., Ogawa N., Hagihara N., Yamamoto K., Imanishi K., Nogi H., et al. (1997) Vasoactive intestinal polypeptide and pituitary adenylate cyclase-activating polypeptide receptor chimeras reveal domains that determine specificity of vasoactive intestinal polypeptide binding and activation. Mol. Pharmacol. 52, 128–135.PubMedGoogle Scholar
  23. Khan I., Wallin R., Gupta R. S., and Kammer G. M. (1998) Protein kinase A-catalyzed phosphorylation of heat shock protein 60 chaperone regulates its attachment to histone 2B in the T lymphocyte plasma membrane. Proc. Natl. Acad. Sci. USA 95, 10,425–10,430.Google Scholar
  24. Krajnak K., Kashon M. L., Rosewell K. L., and Wise P. M. (1998) Aging alters the rhythmic expression of vasoactive intestinal polypeptide mRNA but not arginine vasopressin mRNA in the suprachiasmatic nuclei of female rats. J. Neurosci. 18, 4767–4774.PubMedGoogle Scholar
  25. Krieglstein K., Henheik P., Farkas L., Jaszai J., Galter D., Krohn K., and Unsicker K. (1998) Glial cell line-derived neurotrophic factor requires transforming growth factor-beta for exerting its full neurotrophic potential on peripheral and CNS neurons. J. Neurosci. 18, 9822–9834.PubMedGoogle Scholar
  26. Levi-Montalcini R., Caramia F., and Angeletti P. U. (1969) Alterations in the fine structure of nucleoli in sympathetic neurons following NGF-antiserum treatment. Brain Res. 12, 54–73.PubMedCrossRefGoogle Scholar
  27. Maimone D., Cioni C., Rosa S., Macchia G., Aloisi F., and Annunziata P. (1993) Norepinephrine and vasoactive intestinal peptide induce IL-6 secretion by astrocytes: synergism with IL-1 beta and TNF alpha. J. Neuroimmunol. 47, 73–82.PubMedCrossRefGoogle Scholar
  28. Mohney R. P. and Zigmond R. E. (1998) Vasoactive intestinal peptide enhances its own expression in sympathetic neurons after injury. J. Neurosci. 18, 5285–5293.PubMedGoogle Scholar
  29. Paspalas C. D. and Papadopoulos G. C. (1998) Ultrastructural evidence for combined action of noradrenaline and vasoactive intestinal polypeptide upon neurons, astrocytes, and blood vessels of the rat cerebral cortex. Brain Res. Bull. 45, 247–259.PubMedCrossRefGoogle Scholar
  30. Pellegri G., Magistretti P. J., and Martin J. L. (1998) VIP and PACAP potentiate the action of glutamate on BDNF expression in mouse cortical neurones. Eur. J. Neurosci. 10, 272–280.PubMedCrossRefGoogle Scholar
  31. Said S. I. (1996) Molecules that protect: the defense of neurons and other cells. J. Clin. Invest. 97, 2163–2164.CrossRefGoogle Scholar
  32. Said S. I. and Mutt V. (1972) Isolation from porcine intestinal wall of a vasoactive octacoaspeptide related to secretin and to glucagon. Eur. J. Biochem. 28, 199–204.PubMedCrossRefGoogle Scholar
  33. Servidei T., Aoki Y., Lewis S. E., Symes A., Fink J. S., and Reeves S. A. (1998) Coordinate regulation of STAT signaling and c-fos expression by the tyrosine phosphatase SHP-2. J. Biol. Chem. 273, 6233–6241.PubMedCrossRefGoogle Scholar
  34. Shen K. F. and Crain S. M. (1992) Chronic selective activation of excitatory opioid receptor functions in sensory neurons results in opioid ‘dependence’ without tolerance. Brain Res. 597, 74–83.PubMedCrossRefGoogle Scholar
  35. Zafra F., Hengerer B., Leibrock J., Thoenen H., and Lindholm D. (1990) Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J. 9, 3545–3550.PubMedGoogle Scholar
  36. Zamostiano R., Pinhasov A., Bassan M., Perl O., Steingart R. A., Atlas R., et al. (1999) A femtomolaracting neuroprotective peptide induces increased levels of heat shock protein 60 in rat cortical neurons: a potential neuroprotective mechanism. Neurosci. Lett. 264, 9–12.PubMedCrossRefGoogle Scholar
  37. Zupan V., Hill J. M., Brenneman D. E., Gozes I., Fridkin M., Robberecht P., et al. (1998) Involvement of pituitary adenylate cyclase-activating polypeptide II vasoactive intestinal peptide 2 receptor in mouse neocortical astrocytogenesis. J. Neurochem. 70, 2165–2173.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  1. 1.Department of Clinical Biochemistry, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
  2. 2.Section on Developmental and Molecular Pharmacology, Laboratory of Developmental Neurobiology, National Institutes for Child Health and Human DevelopmentNational Institutes of HealthBethesdaUSA

Personalised recommendations