Journal of Molecular Neuroscience

, Volume 13, Issue 1–2, pp 127–139

Chronic lead intoxication affects the myelin membrane status in the central nervous system of adult rats

  • B. Dabrowska-Bouta
  • G. Sulkowski
  • G. Bartosz
  • M. Walski
  • U. Rafalowska
Article

Abstract

The aim of the experiments presented here was to discern whether prolonged consumption of leaden water, which imitates an environmental exposure, affects the structure of myelin in the central nervous system of adult rats and whether the observed morphological destruction is reflected in biophysical and/or biochemical changes. The results indicated that during chronic lead (Pb) intoxication, the Pb level of the myelin fraction increases significantly. Electron microscopy studies show that myelin in control experiments is built up of ordered layers, whereas in a Pb-intoxicated sample, this order is destroyed in large areas of all preparations. Morphological disturbances in Pb-intoxicated in vivo myelin were reflected by changes in myelin membrane fluidity measured by spectrofluorometry and electron paramagnetic resonance (EPR). Prolonged Pb toxicity also caused significant changes in the morphological structure of oligodendrocytes, an increase of phosphatidylethanolamine, and decrease of protein SH group levels. Simultaneously, we found that the protein and total phospholipid content and levels of phosphatidylinositol, sphingomyelin, phosphatidyloserine, cholesterol, and the pattern of total myelin protein obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in Pb-intoxicated myelin did not change compared to control values. Also, Pb intoxication did not induce peroxidation by itself and did not accelerate peroxidation produced by iron (Fe) in brain myelin.

Index Entries

Lead myelin membrane fluidity oligodendrocytes protein phospholipids SH groups peroxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asakawa T. and Matsushita S. (1980) Coloring conditions of thiobarbituric acid test for detecting lipid hydroperoxides. Lipids 15, 137–140.CrossRefGoogle Scholar
  2. Bartosz G., Szobo G., Szollosz J., Szollosz J., and Damjanovich S. (1981) Aging of the erythrocyte. IX Fluorescence studies on changes in membrane properties. Mech. Ageing Dev. 16, 265–274.PubMedCrossRefGoogle Scholar
  3. Bligh E. G. and Dyer W. J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.PubMedGoogle Scholar
  4. Bowman R. E. and Wolf R. C. (1962) A rapid and specific ultramicro method for serum cholesterol. Clin. Chem. 8, 302–309.PubMedGoogle Scholar
  5. Bradbury M. W. B. and Deane R. (1993) Permeability of the blood-brain barrier to lead. Neurotoxicology 14, 131–136.PubMedGoogle Scholar
  6. Braun P. E. (1977) Molecular architecture of myelin, in Myelin (Morell P., ed.) Plenum, New York, pp. 91–113.Google Scholar
  7. Butterfield D. A. (1977) Electron spin resonance studies of erythrocyte membranes in Muscular dystrophy. Accts. Chem. Res. 10, 111–116.CrossRefGoogle Scholar
  8. Cory-Slechta D. A. and Wichowski D. V. (1991) Low level lead exposure increases sensitivity to this stimulus properties of dopamine D1 and D2 agonists. Brain Res. 553, 65–74.PubMedCrossRefGoogle Scholar
  9. Dabrowska-Bouta B., Strużyńska L., and Rafalowska U. (1996a) Effect of acute and chronic lead exposure on the level of sulfhydryl groups in rat brain. Acta Neurobiol. Exp. 56, 233–236.Google Scholar
  10. Dabrowska-Bouta B., Walski M., Jasińska R., Strużyńska L., Rafalowska U. (1996c) Morphological and biochemical changes in myelin after chronic lead exposure. Int. J. Dev. Neurosci. 14 (Suppl. 1), 96.Google Scholar
  11. Dabrowska-Bouta B., Strużyńska L., and Rafalowska U. (1996d) Effect of acute and chronic lead exposure on the level of sulfhydryl groups in rat brain. Acta Neurobiol. Exp. 56, 233–236.Google Scholar
  12. Davis J. M., Elias R. W., and Grant L. D. (1993) Current issues in human lead exposure and regulation of lead. Neurotoxicology 14, 15–28.PubMedGoogle Scholar
  13. Domańska-Janik K., Wihiel H., Zelman I., and Strosznajder J. (1986) Brain lipids of a myelin-deficient rabbit mutant during development. Neurochem. Pathol. 4, 135–151.PubMedGoogle Scholar
  14. Folch-Pi J. (1955) Composition of the brain in relation to maturation in biochemistry of the developing nervous system. (Waelched H., ed.) Acadia Press, New York, pp. 121–136.Google Scholar
  15. Goering P. L. (1993) Lead-protein interactions as a basis for lead toxicity. Neurotoxicology 14, 45–60.PubMedGoogle Scholar
  16. Grandjean P. (1993) International perspectives of lead exposure and lead toxicity. Neurotoxicology 14, 9–14.PubMedGoogle Scholar
  17. Grant L. D., Kimmel C. S., West G. L. M., Nartinez-Vargas ChM., and Howard J. L. (1980) Chroniclow-level lead toxicity in the rat. Toxicol. Appl. Pharm. 56, 42–58.CrossRefGoogle Scholar
  18. Harry G. J., Toews A. D., Krigman M. R., and Morell P. (1985) The effect of lead toxicity and milk deprivation on myelination in the rat. Toxicol. Appl. Pharmacol. 77, 458–464.PubMedCrossRefGoogle Scholar
  19. Hubbell W. L. and McConnell H. U. (1971) Molecular motion in spin-labeled phospholipids and membranes. J. Chem. Soc. 93, 314–326.CrossRefGoogle Scholar
  20. Jablońska L., Walski M., and Rafalowska U. (1994) Lead as an inductor of some morphological and functional changes in synaptosomes from rat brain. Cell. Mol. Neurobiol. 14(6), 701–709.PubMedCrossRefGoogle Scholar
  21. Laemmli U. K. (1970) Cleavage of structural proteins during the assemble of the head of bacteriophage T4. Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  22. Litmon B. J. and Barenholz Y. (1982) Fluorescent probe: diphenylhexatiene. Methods Enzymol. 81, 678–685.CrossRefGoogle Scholar
  23. London Y., Demel R. A., Geurts van Kessel W. S. M., Vossenberg F. G. A., and van Deenen L. L. M. (1973) The protection of A1 myelin basic protein against the action of proteolitic enzymes after interaction of the protein with lipids at the air-water interface. Biochim. Biophys. Acta 311, 520–530.PubMedCrossRefGoogle Scholar
  24. Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurements with Folin phenol reagent. J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  25. McMorris F. A. and McKinnon R. D. (1996) Regulation of oligodendrocyte development and CNS myelination by growth factors: Prospects for therapy of demyelinating disease. Brain Pathol. 6, 313–329.PubMedGoogle Scholar
  26. Melly-Goubert B. and Freedman M. H. (1980) Lipid fluidity and membrane protein monitoring using 1,6 diphenyl-1,3,5-hexatriene. Biochem. Biophys. Acta 601, 315–327.CrossRefGoogle Scholar
  27. Morell P. (1994) Principles of Neurotoxicology (Chang L. ed.) New York, pp. 583–605.Google Scholar
  28. Morell P., Quorles R. H., and Norton W. T. (1989) Formation, structure and biochemistry of myelin, in Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 4th ed., (Siegel, G. J. ed.) Raven, New York, pp 109–136.Google Scholar
  29. Myher J. J., Kuksis A., and Pind S. (1989) Lipids 24, 39–407.CrossRefGoogle Scholar
  30. Needleman H. L. (1980) Low level lead exposure, in The Clinical Implications of Current Research. Raven, New York.Google Scholar
  31. Norton W. T. (1984) Oligodendroglia. Plenum, New York.Google Scholar
  32. Norton W. T. and Poduslo S. E. (1973) Myelination in rat brain: method of myelin isolation. J. Neurochem. 21, 749–757.PubMedCrossRefGoogle Scholar
  33. Quinlan G. J., Halliwell B., Moorhouse C. P., and Gutterdige J. M. (1988) Action of lead (II) and aluminium (III) ions on iron-stimulated lipid peroxidation in liposomes, erythrocytes and rat liver microsomal fractions. Biochim. Biophys. Acta 962, 196–200.PubMedGoogle Scholar
  34. Rafalowska U., Guang-Jun L., and Floyd R. A. (1989) Peroxidation induced changes in synaptosomal transport of dopamine and aminobutyric acid. Free Radial. Biol. Med. 6, 485–492.CrossRefGoogle Scholar
  35. Rafalowska U., Strużyńska L., Dabrowska-Bouta B., and Lenkiewicz A. (1996) Is lead toxicosis a reflection of altered energy metabolism in brain synaptosomes? Acta Neurobiol. Exp. 56, 611–617.Google Scholar
  36. Raine C. S. (1984) Morphology of myelin and myelination, in Myelin, 2nd ed. (Morell P., ed.) Plenum, New York, pp. 1–4.Google Scholar
  37. Rouser G., Fleischer S., and Yamamoto A. (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5, 494–496.PubMedCrossRefGoogle Scholar
  38. Sedlak J. and Lindsay R. H. (1968) Estimation of total, protein bound and non protein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 25, 192–205.PubMedCrossRefGoogle Scholar
  39. Shinitzky R. and Inbar M. (1974) Difference in microviscosity induced by different cholesterol levels in the surface membrane lipid layer of normal lymphocytes and malignant lymphoma cells. J. Mol. Biol. 85, 603–615.PubMedCrossRefGoogle Scholar
  40. Silbergeld E. K. (1983) Location of metals: Issues of importance to neurotoxicology of lead. Neurotoxicology 4(3), 193–200.PubMedGoogle Scholar
  41. Skoczyńska A., Smolik R., and Jeleń M. (1993) Lipid abnormalities in rats given small doses of lead. Arch. Toxicol. 67, 200–204.PubMedCrossRefGoogle Scholar
  42. Strużyńska L., Walski M., Gadamski R., Dabrowska-Bouta B., and Rafalowska U. (1997) Lead-induced abnormalities in the blood-brain barrier permeability in experimental chronic toxicity. Mol. Chem. Neuropathol. 31, 207–223.PubMedGoogle Scholar
  43. Sundström R. and Karlsson B. (1987) Myelin basic protein in brains of rats with low dose lead encephalopathy. Arch. Toxicol. 59, 341–345.PubMedCrossRefGoogle Scholar
  44. Toews A. D., Krigman M. R., Thomas D. J., and Morell P. (1980) Effect of inorganic lead exposure on myelination in the rat. Neurochem. Res. 5, 605–616.PubMedCrossRefGoogle Scholar
  45. Toews A. D., Blaker W. D., Thomas D. J., Gayonor J. J., Krigman M. R., Mushak P., et al. (1983) Myelin deficit produced by early postnatal exposure to inorganic lead or triethyltin are persistent. J. Neurochem. 41, 816–822.PubMedCrossRefGoogle Scholar
  46. Tschudy D. P. and Lamon J. M. (1980) in Metabolic Disease and Control (Bandy P. K. and Rosenberg L. E., eds.) W. B. Saunders, Philadelphia, pp. 939–1007.Google Scholar
  47. Wilbur K. M., Bernheim F., and Shapiro O. W. (1949) The thiobarbituric acid reagent as a test for the oxidation of unsaturated fatty acids by various agents. Arch. Biochem. Biophys. 24, 305–313.Google Scholar

Copyright information

© Humana Press Inc 1999

Authors and Affiliations

  • B. Dabrowska-Bouta
    • 1
  • G. Sulkowski
    • 1
  • G. Bartosz
    • 3
  • M. Walski
    • 2
  • U. Rafalowska
    • 1
  1. 1.Department of NeurochemistryLaboratory of Pathobiochemistry of CNSPoland
  2. 2.Laboratory of Ultrastructure of the Cell, Medical Research CenterPolish Academy of SciencesWarsawPoland
  3. 3.Institute of BiophysicsUniversity of LodzLodzPoland

Personalised recommendations