Immunologic Research

, Volume 36, Issue 1–3, pp 91–99 | Cite as

Adenosine-mediated inhibition of cytotoxic activity and cytokine production by IL-2/NKp46-Activated NK cells

Involvement of Protein kinase a isozyme I (PKAI)
  • Tatiana Raskovalova
  • Anna Lokshin
  • Xiaojun Huang
  • Edwin K. Jackson
  • Elieser Gorelik


Adenosine suppresses the production of various cytokines/ chemokines and inhibits the cytotoxic activity of murine and human NK cells activated with IL-2 or Ly49D, NKp46-receptor crosslinking, respectively. These effects are mediated by the type A2A adenosine receptor via stimulation of adenylyl cyclase, increased production of cAMP, and activation of PKA. PKA I, but not PKA II, participates in the inhibitory effects of adenosine. Blocking regulatory, but not catalytic, subunits of PKA I abrogates the inhibitory effects of adenosine. These findings suggest that tumor-produced adenosine inhibits the activity of NK and other effector cells and thereby protects tumors from immune-mediated destruction.

Key Words

NK cells PKA Adenosine Cytotoxicity Cytokines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burnstock G: The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology 1997;36:1127–1139.PubMedCrossRefGoogle Scholar
  2. 2.
    Klinger M, Freissmuth M, Nanoff C: Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell Signal 2002;14:99–108.PubMedCrossRefGoogle Scholar
  3. 3.
    Sitkovsky MV, Lukashev D, Apasov S, et al. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 2004;22:657–682.PubMedCrossRefGoogle Scholar
  4. 4.
    Cronstein BN: Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 1994;76:5–13.PubMedGoogle Scholar
  5. 5.
    Panther E, Corinti S, Idzko M, et al: Adenosine affects expression of membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells. Blood 2003;101:3985–3990.PubMedCrossRefGoogle Scholar
  6. 6.
    Szabo C, Scott GS, Virag L, et al: Suppression of macrophage inflammatory protein (MIP)-1 alpha production and collagen-induced arthritis by adenosine receptor agonists. Br J Pharmacol 1998;125:379–387.PubMedCrossRefGoogle Scholar
  7. 7.
    Lukashev D, Ohta A, Apasov S, Chen JF, Sitkovsky M: Cutting edge: physiologic attenuation of proinflammatory transcription by the Gs protein-coupled A2A adenosine receptor in vivo. J Immunol 2004;173:21–24.PubMedGoogle Scholar
  8. 8.
    Koshiba M, Kojima H, Huang S, Apasov S, Sitkovsky MV. Memory of extracellular adenosine A2A purinergic receptor-mediated signaling in murine T cells. J Biol Chem 1997;272:25881–25889.PubMedCrossRefGoogle Scholar
  9. 9.
    Huang S, Apasov S, Koshiba M, Sitkovsky M: Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 1997;90:1600–1610.PubMedGoogle Scholar
  10. 10.
    Hasko G, Kuhel DG, Chen JF, et al: Adenosine inhibits IL-12 and TNF-[alpha] production via adenosine A2a receptor-dependent and independent mechanisms. FASEB J 2000;14:2065–2074.PubMedCrossRefGoogle Scholar
  11. 11.
    Ohta A, Sitkovsky M: Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 2001;414:916–920.PubMedCrossRefGoogle Scholar
  12. 12.
    Blay J, White TD, Hoskin DW: The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 1997;57:2602–2605.PubMedGoogle Scholar
  13. 13.
    Raskovalova T, Huang X, Sitkovsky, M, Zacharia LC, Jackson EK, Gorelik E: Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells. J Immunol 2005;175:4383–4391.PubMedGoogle Scholar
  14. 14.
    Gorelik E, Wiltrout RH, Okumura K, Habu S, Herberman RB: Role of NK cells in the control of metastatic spread and growth of tumor cells in mice. Int J Cancer 1982;30:107–112.PubMedCrossRefGoogle Scholar
  15. 15.
    Skalhegg BS, Tasken K: Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA. Front Biosci 2000;5:D678–693.PubMedCrossRefGoogle Scholar
  16. 16.
    Cho-Chung YS, Nesterova M, Becker KG, et al: Dissecting the circuitry of protein kinase A and cAMP signaling in cancer genesis: antisense, microarray, gene overexpression, and transcription factor decoy. Ann NY Acad Sci 2002;968:22–36.PubMedGoogle Scholar
  17. 17.
    Neary CL, Nesterova M, Cho YS, Cheadle C, Becker KG, Cho-Chung YS. Protein kinase A isozyme switching: eliciting differential cAMP signaling and tumor reversion. Oncogene 2004;23:8847–8856.PubMedCrossRefGoogle Scholar
  18. 18.
    torgersen KM, Vang T, Abrahamsen H, Yagub S, Tasken K. Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cell Signal 2002;14:1–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Torgersen KM, Vaage JT, Levy FO, Hansson V, Rolstad B, Tasken K: Selective activation of cAMP-dependent protein kinase type I inhibits rat natural killer cell cytotoxicity. J Biol Chem 1997;272:5495–5500.PubMedCrossRefGoogle Scholar
  20. 20.
    Bryce PJ, Dascombe MJ, Hutchinson IV: Immunomodulatory effects of pharmacological elevation of cyclic AMP in T lymphocytes proceed via a protein kinase A independent mechanism. Immunopharmacology 1999; 41:139–146.PubMedCrossRefGoogle Scholar
  21. 21.
    Staples KJ, Bergmann M, Tomita K, et al: Adenosine 3′,5′-cyclic monophosphate (cAMP)-dependent inhibition of IL-5 from human T lymphocytes is not mediated by the cAMP-dependent protein kinase A. Immunol 2001;167:2074–2080.Google Scholar
  22. 22.
    Chin KV, Yang WL, Ravatn R, et al: Reinventing the wheel of cyclic AMP: novel mechanisms of cAMP signaling. Ann N Y Acad Sci 2002;968:49–64.PubMedCrossRefGoogle Scholar
  23. 23.
    Beebe SJ, Blackmore PF, Chrisman TD, Corbin JD: Use of synergistic pairs of site-selective cAMP analogs in intact cells. Methods Enzymol 1988;159:118–139.PubMedCrossRefGoogle Scholar
  24. 24.
    Marcenaro E, Della Chiesa M, Bellora F, et al: IL-12 or IL-4 prime human NK cells to mediate functionally divergent interactions with dendritic cells or tumors. J Immunol 2005;174:3992–3998.PubMedGoogle Scholar
  25. 25.
    Gorelik E, Landsittel DP, Marrangoni AM, et al: Multiplexed immunobead-based cytokine profiling for early detection of ovarian cancer. Cancer Epidemiol Biomarkers Prev 2005;14:981–987.PubMedCrossRefGoogle Scholar
  26. 26.
    Gjertsen BT, Mellgren G, Otten A, et al: Novel (Rp)-cAMPS analogs as tools for inhibition of cAMP-kinase in cell culture. Basal cAMP-kinase activity modulates interleukin-1 beta action. J Biol Chem 1995;270: 20599–20607.PubMedCrossRefGoogle Scholar
  27. 27.
    Kirschner LS, Kusewitt DF, Matyakhina L, et al: A mouse model for the Carney complex tumor syndrome develops neoplasia in cyclic AMP-responsive tissues. Cancer Res 2005;65:4506–4514.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Tatiana Raskovalova
    • 1
  • Anna Lokshin
    • 4
  • Xiaojun Huang
    • 1
  • Edwin K. Jackson
    • 3
    • 4
  • Elieser Gorelik
    • 1
    • 2
  1. 1.Department of PathologyUniversity of Pittsburgh University of Pittsburgh Cancer InstitutePittsburgh
  2. 2.Department of ImmunologyUniversity of Pittsburgh, University of Pittsburgh Cancer InstitutePittsburgh
  3. 3.Department PharmacologyUniversity of Pittsburgh, University of Pittsburgh Cancer InstitutePittsburgh
  4. 4.Department Medicine and Center for Clinical PharmacologyUniversity of Pittsburgh, University of Pittsburgh Cancer InstitutePittsburgh

Personalised recommendations