Immunologic Research

, Volume 36, Issue 1–3, pp 27–32 | Cite as

From B cell to plasma cell

Regulation of V(D)J recombination and antibody secretion
  • Lisa Borghesi
  • Christine Milcarek


B cell development culminates in the formation of plasma cells, potent secretors of the immunoglobulins (Ig), proteins crucial for the health of the organism. Two distinctive and crucial steps are required during B cell differentiation. First, variable gene segments encoding the antigen-binding region of Ig undergo directed rearrangement through a process known as V(D)J recombination. Second, alternative processing of the Ig heavy chain mRNA transcript enables plasma cells to secrete high levels of Ig protein. This review focuses on the molecular mechanisms that control V(D)J recombination in B cell progenitors and alternative RNA processing in plasma cells.

Key Words

V(D)J recombination E47 Hematopoiesis hnRNP F CstF-64 Plasma cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hardy RR, Carmack CE, Shinton SA, Kemp JD, Hayakawa K: Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J Exp Med 1991;173:1213–1225.PubMedCrossRefGoogle Scholar
  2. 2.
    Li YS, Wasserman R, Hayakawa K, Hardy RR: Identification of the earliest B lineage stage in mouse bone marrow. Immunity 1996;5:527–535.PubMedCrossRefGoogle Scholar
  3. 3.
    Yu W, Misulovin Z, Suh H, et al: Coordinate regulation of RAG1 and RAG2 by cell type-specific DNA elements 5′ of RAG 2. Science 1999;285:1080–1084.PubMedCrossRefGoogle Scholar
  4. 4.
    Borghesi L, Gerstein RM: Developmental separation of V(D)J recombinase expression and initiation of IgH recombination in B lineage progenitors in vivo. J Exp Med 2004;199:483–489.PubMedCrossRefGoogle Scholar
  5. 5.
    Borghesi L, Hsu LY, Miller JP, et al: B lineage-specific regulation of V(D)J recombinase activity is established in common lymphoid progenitors. J Exp Med 2004; 199:491–502.PubMedCrossRefGoogle Scholar
  6. 6.
    Igarashi H, Gregory SC, Yokota T, Sakaguchi N, Kincade PW. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 2002;17:117–130.PubMedCrossRefGoogle Scholar
  7. 7.
    Monroe RJ, Chen F, Ferrini R, Davidson L, Alt FW: RAG2 is regulated differentially in B and T cells by elements 5′ of the promoter. Proc Natl Acad Sci USA 1999;96:12713–12718.PubMedCrossRefGoogle Scholar
  8. 8.
    Wei XC, Kishi H, Jin ZX, et al: Characterization of chromatin structure and enhancer elements for murine recombination activating gene-2. J Immunol 2002; 169:873–881.PubMedGoogle Scholar
  9. 9.
    Yu W, Nagaoka H, Misulovin Z, et al: RAG expression in B cells in secondary lymphoid tissues. Cold Spring Harb Symp Quant Biol 1999;64:207–210.PubMedCrossRefGoogle Scholar
  10. 10.
    Hsu LY, Lauring J, Liang HE, et al: A conserved transcriptional enhancer regulates RAG gene expression in developing B cells. Immunity 2003;19:105–117.PubMedCrossRefGoogle Scholar
  11. 11.
    Borghesi L, Aites J, Nelson S, Lefterov P, James P, Gerstein R: E47 is required for V(D)J recombinase activity in common lymphoid progenitors. J Exp Med 2005;202:1669–1677.PubMedCrossRefGoogle Scholar
  12. 12.
    Greenbaum S, Zhuang Y: Identification of E2A target genes in B lymphocyte development by using a gene tagging-based chromatin immunoprecipitation system. Proc Natl Acad Sci USA 2002;99:15030–15035.PubMedCrossRefGoogle Scholar
  13. 13.
    Kee BL, Murre C: Induction of early B cell factor (EBF) and multiple B lineage genes by the basic helix-loop-helix transcription factor E12. J Exp Med 1998; 188:699–713.PubMedCrossRefGoogle Scholar
  14. 14.
    Bain G, Robanus Maandag EC, et al: Both E12 and E47 allow commitment to the B cell lineage. Immunity 1997;6:145–154.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhuang Y, Soriano P, Weintraub H: The helix-loop-helix gene E2A is required for B cells formation. Cell 1994;79: 875–884.PubMedCrossRefGoogle Scholar
  16. 16.
    Bain G, Maandag EC, Izon DJ, et al.: E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 1994;79: 885–892.PubMedCrossRefGoogle Scholar
  17. 17.
    Schwarz BA, Bhandoola A. Circulating hematopoietic progenitors with T lineage potential. Nat Immunol 2004; 5:953–960.PubMedCrossRefGoogle Scholar
  18. 18.
    Allman D, Sambandam A, Kim S, et al: Thymopoiesis independent of common lymphoid progenitors. Nat Immunol 2003;4:168–174.PubMedCrossRefGoogle Scholar
  19. 19.
    Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM: BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 2000;13:199–212.PubMedCrossRefGoogle Scholar
  20. 20.
    Sciammas R, Davis MM: Modular nature of Blimp-1 in the regulation of gene expression during B cell maturation. J Immunol 2004;172:5427–5440.PubMedGoogle Scholar
  21. 21.
    Edwalds-Gilbert G, Veraldi KL, Milcarek C: Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res 1997;25: 2547–2561.PubMedCrossRefGoogle Scholar
  22. 22.
    Edwalds-Gilbert G, Milcarek C: Regulation of poly(A) site use during mouse B-cell development involves a change in the binding of a general polyadenylation factor in a B-cell stage-specific manner. Mol Cell Biol 1995;15:6420–6429.PubMedGoogle Scholar
  23. 23.
    Mann KP, Weiss EA, Nevins JR: Alternative poly(A) site utilization during adenovirus infection coincides with a decrease in the activity of a poly(A) site processing factor. Mol Cell Biol 1993;13:2411–2419.PubMedGoogle Scholar
  24. 24.
    McGregor F, Phelan A, Dunlop J, Clements JB: Regulation of herpes simplex virus poly (A) site usage and the action of immediate-early protein IE63 in the early-late switch. J Virol 1996;70:1931–1940.PubMedGoogle Scholar
  25. 25.
    Veraldi KL, Arhin GK, Martincic K, Chung-Gamster LH, Wilusz J, Milcarek C: hnRNP F influences binding of a 64-kilodalton subunit of cleavage stimulation factor to mRNA precursors in mouse B cells. Mol Cell Biol 2001;21:1228–1238.PubMedCrossRefGoogle Scholar
  26. 26.
    Alkan SA, Martincic K, Milcarek C: The hnRNPsF and H2 bind to similar sequences to influence gene expression. Biochem J 2006;393:361–371.PubMedCrossRefGoogle Scholar
  27. 27.
    Kamma H, Portman DS, Dreyfuss G: Cell type-specific expression of hnRNP proteins. Exp Cell Res 1995;221: 187–196.PubMedCrossRefGoogle Scholar
  28. 28.
    Milcarek C, Martincic K, Chung-Ganster LH, Lutz CS: The snRNP-associated U1A levels change following IL-6 stimulation of human B-cells. Mol Immunol 2003;39: 809–814.PubMedCrossRefGoogle Scholar
  29. 29.
    Proudfoot NJ, Furger A, Dye MJ: Integrating mRNA processing with transcription. Cell 2002:108:501–512.PubMedCrossRefGoogle Scholar
  30. 30.
    Cramer P, Caceres JF, Cazalla D, et al: Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. Mol Cell 1999;4:251–258.PubMedCrossRefGoogle Scholar
  31. 31.
    Hirose Y, Manley JL: RNA polymerase II and the integration of nuclear events. Genes Dev 2000;14:1415–1429.PubMedGoogle Scholar
  32. 32.
    Dantonel JC, Murthy KG, Manley JL, Tora L: Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature 1997;389:399–402.PubMedCrossRefGoogle Scholar
  33. 33.
    Fong N, Bentley DL: Capping, splicing, and 3′ processing are independently stimulated by RNA poly merase II: different functions for different segments of the CTD. Genes Dev 2001;15:1783–1795.PubMedCrossRefGoogle Scholar
  34. 34.
    Shilatifard A, Duan DR, Haque D, et al: ELL2, a new member of an ELL family of RNA polymerase II elongation factors. Proc Natl Acad Sci USA 1997;94: 3639–3643.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Lisa Borghesi
    • 1
  • Christine Milcarek
    • 1
  1. 1.Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburgh

Personalised recommendations