Immunologic Research

, Volume 36, Issue 1–3, pp 137–146 | Cite as

Helper roles of NK and CD8+ T cells in the induction of tumor immunity

Polarized dendritic cells as cancer vaccines
  • Pawel Kalinski
  • Yutaro Nakamura
  • Payal Watchmaker
  • Adam Giermasz
  • Ravikumar Muthuswamy
  • Robbie B. Mailliard
Article

Abstract

The work in our laboratory addresses two interrelated areas of dendritic cell (DC) biology: (1) the role of DCs as mediators of feedback interactions between NK cells, CD8+ and CD4+ T cells; and (2) the possibility to use such feedback and the paradigms derived from anti-viral responses, to promote the induction of therapeutic immunity against cancer. We observed that CD8+ T cells and NK cells, the classical “effector” cells, also play “helper” roles, regulating ability of DCs to induce type-1 immune immunity, critical for fighting tumors and intracellular pathogens. Our work aims to delineate which pathways of NK and CD8+ T cell activation result in their helper activity, and to identify the molecular mechanisms allowing them to induce type-1 polarized DCs (DC1s) with selectively enhanced ability to promote type-1 responses and anti-cancer immunity. The results of these studies allowed us and our colleagues to design phase I/II clinical trials incorporating the paradigms of DC polarization and helper activity of effector cells in cancer immunotherapy.

Key Words

Dendric cells Cancer Immunotherapy Vaccines Th 1 CTL NK cells Clinical trials Melanoma Colorectal cancer Prostate cancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banchereau, J., Steinman RM: Dendritic cells and the control of immunity. Nature 1998;392:245–252.PubMedCrossRefGoogle Scholar
  2. 2.
    Schuler G, Schuler-Thurner B, Steinman RM. The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 2003;15:138–147.PubMedCrossRefGoogle Scholar
  3. 3.
    Schuler G, Steinman RM: Dendritic cells as adjuvants for immune-mediated resistance to tumors. J Exp Med 1997;186:1183–1187.PubMedCrossRefGoogle Scholar
  4. 4.
    Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML: T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 1999;20:561–567.PubMedCrossRefGoogle Scholar
  5. 5.
    Kapsenberg ML: Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 2003;3:984–993.PubMedCrossRefGoogle Scholar
  6. 6.
    Ikeda H, Chamoto K, Tsuji T, et al.: The critical role of type-1 innate and acquired immunity in tumor immunotherapy. Cancer Sci 2004;95:697–703.PubMedCrossRefGoogle Scholar
  7. 7.
    Pulendram B: Modulating TH1/TH2 responses with mirobes, dendritic cells, and pathogen recognition receptors. Immunol Res 2004;29:187–196.CrossRefGoogle Scholar
  8. 8.
    Trinchieri G: Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003;3:133–146.PubMedCrossRefGoogle Scholar
  9. 9.
    Palucka K, Banchereau J: How dendritic cells and microbes interact to elicit or subvert protective immune responses. Curr Opin Immunol 2002;14:420–431.PubMedCrossRefGoogle Scholar
  10. 10.
    Czerniecki BJ, Cohen PA, Faries M, Xu S, Roros JG, Bedrosian I: Diverse functional activity of CD83+ monocyte-derived dendritic cells and the implications for cancer vaccines. Crit Rev Immunol 2001;21:157–178.PubMedGoogle Scholar
  11. 11.
    Kalinski, P, Moser M: Consensual immunity: success-driven development of T-helper-1 and T-helper-2 responses. Nat Rev Immunol 2005;5:251–260.PubMedCrossRefGoogle Scholar
  12. 12.
    Mora JR, Bono MR, Manjunath N, et al: Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 2003;424:88–93.PubMedCrossRefGoogle Scholar
  13. 13.
    Mora JR, Cheng G, Picarella D, Briskin M, Buchanan N, von Andrian UH: Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues. J Exp Med 2005;201:303–316.PubMedCrossRefGoogle Scholar
  14. 14.
    Mora JR, von Andrian UH: Retinoic acid: an educational “vitamin elixir” for gut-seeking T cells. Immunity 2004;21:458–460.PubMedCrossRefGoogle Scholar
  15. 15.
    Schaerli P, Loetscher P, Moser B: Cutting edge: induction of follicular homing precedes effector Th cell development. J Immunol 2001;167:6082–6086.PubMedGoogle Scholar
  16. 16.
    Stagg AJ, Kamm MA, Knight SC: Intestinal dendritic cells increase T cell expression of alpha4beta7 integrin. Eur J Immunol 2002;32:1445–1454.PubMedCrossRefGoogle Scholar
  17. 17.
    Weninger W, Manjunath N, von Andrian UH: Migration and differentiation of CD8+ T cells. Immunol Rev 2002;186:221–233.PubMedCrossRefGoogle Scholar
  18. 18.
    Calzascia T, Masson F, Di Berardino-Besson W, et al: Homing phenotypes of tumor-specific CD8T cells are predetermined at the tumor site by crosspresenting APCs. Immunity 2005;22:175–184.PubMedCrossRefGoogle Scholar
  19. 19.
    Fernandez NC, Lozier A, Flament C, et al.: Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 1999;5:405–411.PubMedCrossRefGoogle Scholar
  20. 20.
    Yang L, Carbone DP: Tumor-host immune interactions and dendritic cell dysfunction. Adv Cancer Res 2004;92:13–27.PubMedGoogle Scholar
  21. 21.
    Pinzon-Charry A, Maxwell T, Lopez JA: Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 2005;83:451–461.PubMedCrossRefGoogle Scholar
  22. 22.
    Srivastava PK: Therapeutic cancer vaccines. Curr Opin Immunol 2006;18:201–205.PubMedCrossRefGoogle Scholar
  23. 23.
    Nestle FO, Farkas A, Conrad C: Dendritic-cell-based therapeutic vaccination against cancer. Curr Opin Immunol 2005;17:163–169.PubMedCrossRefGoogle Scholar
  24. 24.
    Banchereau J, Palucka AK: Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005; 5:296–306.PubMedCrossRefGoogle Scholar
  25. 25.
    Rosenberg SA, Yang JC, Restifo NP: Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004;10:909–915.PubMedCrossRefGoogle Scholar
  26. 26.
    Ruedl C, Kopf M, Bachmann MF: CD8(+) T cells mediate CD40-independent maturation of dendritic cells in vivo. J Exp Med 1999;189:1875–1884.PubMedCrossRefGoogle Scholar
  27. 27.
    Gurunathan S, Stobie L, Prussin C, et al: Requirements for the maintenance of Th1 immunity in vivo following DNA vaccination: a potential immunoregulatory role for CD8+ T cells. J Immunol 2000;165:915–924.PubMedGoogle Scholar
  28. 28.
    Mailliard RB, Egawa S, Cai Q, et al: Complementary dendritic cell-activating function of CD8+ and CD4+ T cells: helper role of CD8+ T cells in the development of T helper type 1 responses. J Exp Med 2002;195:473–483.PubMedCrossRefGoogle Scholar
  29. 29.
    Herberman RB, Djeu J, Kay HD, et al: natural killer cells: characteristics and regulation of activity. Immunol Rev 1979;44:43–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Munz C: Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 2002;195:343–351.PubMedCrossRefGoogle Scholar
  31. 31.
    Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G: Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 2002;195:327–333.PubMedCrossRefGoogle Scholar
  32. 32.
    Piccioli D, Sbrana S, Melandri E, Valiante NM: Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med 2002;195:335–341.PubMedCrossRefGoogle Scholar
  33. 33.
    Mailliard RB, Son YI, Redlinger R, et al: Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J Immunol 2003;171:2366–2373.PubMedGoogle Scholar
  34. 34.
    Ferlazzo G, Morandi B, D'Agostino A, et al: The interaction between NK cells and dendritic cells in bacterial infections results in rapid induction of NK cell activation and in the lysis of uninfected dendritic cells. Eur J Immunol 2003;33:306–313.PubMedCrossRefGoogle Scholar
  35. 35.
    Vitale M, Chiesa MD, Carlomagno S, et al: NK-dependent DC maturation is mediated by TNF{alpha} and IFN{gamma} released upon engagement of the NKp30 triggering receptor. Blood 2005;106:566–571.PubMedCrossRefGoogle Scholar
  36. 36.
    Vieira PL, de Jong EC, Wierenga EA, Kapsenberg ML, Kalinski P: Development of Th1-inducing capacity in myeloid dendritic cells requires environmental instruction. J Immunol 2000;164:4507–4512.PubMedGoogle Scholar
  37. 37.
    Kamath AT, Sheasby CE, Tough DF: Dendritic cells and NK cells stimulate bystander T cell activation in response to TLR agonists through secretion of IFN-{alpha} {beta} and IFN-{gamma}. J Immunol 2005; 174:767–776.PubMedGoogle Scholar
  38. 38.
    Gerosa F, Gobbi A, Zorzi P, et al: The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. J Immunol 2005;174:727–734.PubMedGoogle Scholar
  39. 39.
    Mailliard RB, Alber SM, Shen H, et al: IL-18-induced CD83+CCR7+ NK helper cells. J Exp Med 2005; 202:941–953.PubMedCrossRefGoogle Scholar
  40. 40.
    Ferlazzo G, Pack M, Thomas D, et al: Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci USA 2004;101:16606–16611.PubMedCrossRefGoogle Scholar
  41. 41.
    Cooper MA, Fehniger TA, Turner SC, et al: Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 2001;97:3146–3151.PubMedCrossRefGoogle Scholar
  42. 42.
    Fehniger TA, Cooper MA, Nuovo GJ, et al: CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 2003; 101:3052–2057.PubMedCrossRefGoogle Scholar
  43. 43.
    Ferlazzo G, Thomas D, Lin SL, et al: The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J Immunol 2004;172:1455–1462.PubMedGoogle Scholar
  44. 44.
    Carson WE, Fehniger TA, Caligiuri MA: CD56bright natural killer cell subsets: characterization of distinct functional responses to interleukin-2 and the c-kit ligand. Eur J Immunol 1997;27:354–360.PubMedCrossRefGoogle Scholar
  45. 45.
    Chan CW, Crafton E, Fan HN, et al: Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat Med 2006;12:207–213.PubMedCrossRefGoogle Scholar
  46. 46.
    Taieb J, Chaput N, Menard C, et al: A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med 2006;12:214–219.PubMedCrossRefGoogle Scholar
  47. 47.
    Dhodapkar MV, Steinman RM, Sapp M, et al: Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J Clin Invest 1999;104:173–180.PubMedCrossRefGoogle Scholar
  48. 48.
    de Vries IJ, Lesterhuis WJ, Scharenborg NM, et al: Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 2003;9:5091–5100.PubMedGoogle Scholar
  49. 49.
    Adema GJ, de Vries IJ, Punt CJ, Figdor CG: Migration of dendritic cell based cancer vaccines: in vivo veritas? Curr Opin Immunol 2005;17:170–174.PubMedCrossRefGoogle Scholar
  50. 50.
    De Vries IJ, Krooshoop DJ, Scharenborg NM, et al: Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 2003;63:12–17.PubMedGoogle Scholar
  51. 51.
    Zitvogel L, Mayordomo JI, Tjandrawan T, et al: Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med 1996;183:87–97.PubMedCrossRefGoogle Scholar
  52. 52.
    Zitvogel L, Robbins PD, Storkus WJ, et al: Interleukin-12 and B7.1 co-stimulation cooperate in the induction of effective antitumor immunity and therapy of established tumors. Eur J Immunol 1996;26:1335–1341.PubMedCrossRefGoogle Scholar
  53. 53.
    Furumoto K, Arii S, Yamasaki S, et al: Spleen-derived dendritic cells engineered to enhance interleukin-12 production elicit therapeutic antitumor immune responses. Int J Cancer 2000;87:665–672.PubMedCrossRefGoogle Scholar
  54. 54.
    Furumoto K, Mori A, Yamasaki S, et al: Interleukin-12-gene transduction makes DCs from tumor-bearing mice an effective inducer of tumor-specific immunity in a peritoneal dissemination model. Immunol Lett 2002;83:13–20.PubMedCrossRefGoogle Scholar
  55. 55.
    Nishioka Y, Hirao M, Robbins PD, Lotze MT, Tahara H: Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res 1999;59:4035–4041.PubMedGoogle Scholar
  56. 56.
    Okada N, Iiyama S, Okada Y, et al: Immunological properties and vaccine efficacy of murine dendritic cells simultaneously expressing melanoma-associated antigen and interleukin-12. Cancer Gene Ther 2005;12:72–83.PubMedCrossRefGoogle Scholar
  57. 57.
    Redlinger RE, Jr., Mailliard RB, Barksdale EM, Jr: Advanced neuroblastoma impairs dendritic cell function in adoptive immunotherapy. J Pediatr Surg 2003; 38:857–862.PubMedCrossRefGoogle Scholar
  58. 58.
    Satoh Y, Esche C, Gambotto A, et al: Local administration of IL-12-transfected dendritic cells induces antitumor immune responses to colon adenocarcinoma in the liver in mice. J Exp Ther Oncol 2002;2:337–349.PubMedCrossRefGoogle Scholar
  59. 59.
    Shimizu T, Berhanu A, Redlinger RE, Jr, Watkins S, Lotze MT, Barksdale EM, Jr: Interleukin-12 transduced dendritic cells induce regression of established murine neuroblastoma. J Pediatr Surg 2001;36:1285–1292.PubMedCrossRefGoogle Scholar
  60. 60.
    Yamanaka R, Zullo SA, Ramsey J, et al: Marked enhancement of antitumor immune responses in mouse brain tumor models by genetically modified dendritic cells producing Semliki Forest virus-mediated interleukin-12. J Neurosurg 2002;97:611–618.PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang S, Zeng G, Wilkes DS, et al: Dendritic cells transfected with interleukin-12 and pulsed with tumor extract inhibit growth of murine prostatic carcinoma in vivo. Prostate 2003;55:292–298.PubMedCrossRefGoogle Scholar
  62. 62.
    Kalinski P, Schuitemaker JH, Hilkens CM, Wierenga EA, Kapsenberg ML: Final maturation of dendritic cells is associated with impaired responsiveness to IFN-gamma and to bacterial IL-12 inducers: decreased ability of mature dendritic cells to produce IL-12 during the interaction with Th cells. J Immunol 1999;162:3231–3236.PubMedGoogle Scholar
  63. 63.
    Langenkamp A, Messi M, Lanzavecchia A, Sallusto F: Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 2000;1:311–316.PubMedCrossRefGoogle Scholar
  64. 64.
    Jonuleit H, Kuhn U, Muller G, et al: Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 1997; 27:3135–3142.PubMedCrossRefGoogle Scholar
  65. 65.
    Mailliard RB, Wankowicz-Kalinska A, Cai Q., et al: alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 2004;64:5934–5937.PubMedCrossRefGoogle Scholar
  66. 66.
    Luft T, Jefford M, Luetjens P, et al: Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E(2) regulates the migratory capacity of specific DC subsets. Blood 2002;100:1362–1372.PubMedCrossRefGoogle Scholar
  67. 67.
    Scandella E, Men Y, Gillessen S, Forster R, Groettrup M: Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood 2002;100:1354–1361.PubMedCrossRefGoogle Scholar
  68. 68.
    Kalinski P, Schuitemaker JH, Hilkens CM, Kapsenberg ML: Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation. J Immunol 1998;161:2804–2809.PubMedGoogle Scholar
  69. 69.
    Kalinski P, Smits HH, Schuitemaker JH, et al: IL-4 is a mediator of IL-12p70 induction by human Th2 cells: reversal of polarized Th2 phenotype by dendritic cells. J Immunol 2000;165:1877–1881.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Pawel Kalinski
    • 1
    • 2
    • 3
    • 4
  • Yutaro Nakamura
    • 1
  • Payal Watchmaker
    • 1
  • Adam Giermasz
    • 1
  • Ravikumar Muthuswamy
    • 1
  • Robbie B. Mailliard
    • 1
  1. 1.Department of SurgeryUniversity of PittsburghPittsburgh
  2. 2.Department of ImmunologyUniversity of PittsburghPittsburgh
  3. 3.Department of Infectious Diseases and MicrobiologyUniversity of Pittsburgh
  4. 4.Department of SurgeryUniversity of Pittsburgh Cancer Institute, Hillman Cancer Center, Res. PavilionPittsburgh

Personalised recommendations