Immunologic Research

, Volume 35, Issue 3, pp 233–248

Advances in potential M-protein peptide-based vaccines for preventing rheumatic fever and rheumatic heart disease

  • Michael R. Batzloff
  • Manisha Pandey
  • Colleen Olive
  • Michael F. Good


Rheumatic fever (RF) and rheumatic heart disease (RHD) are post-infectious complications of an infection (or repeated infection) with the Gram-positive bacterium Streptococcus pyogenes (also known as group A streptococcus, GAS). RF and RHD are global problems and affect many indigenous populations of developed countries and many developing countries. However, RF and RHD are only part of a larger spectrum of diseases caused by this organism. The development of a vaccine against GAS has primarily targeted the abundant cell-surface protein called the M-protein. This review focuses on different M-protein-based-subunit vaccine approaches and the different delivery technologies used to administer these vaccine candidates in preclinical studies.

Key Words

Peptide Vaccine Streptococcus Lipids Conjugation Antimicrobials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WHO: Global Polio Eradication Initiative: Strategic Plan 2004–2008. World Health Organization. Geneva, 2003.Google Scholar
  2. 2.
    Merrifield RB: Solid phase peptide synthesis I: The synthesis of a tetrapeptide. J Am Chem Soc 1963;85: 2149–2153.CrossRefGoogle Scholar
  3. 3.
    Carpino LA, Han GY: The 9-fluorenylmethoxycarbonyl amino-protecting group. J Org Chem 1972;37:3404–3409.CrossRefGoogle Scholar
  4. 4.
    Fields GB, Nobel RL: Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Intern J Pep Prot Res 1990;35:161–214.Google Scholar
  5. 5.
    Cherry DK, Woodwell DA: National Ambulatory Medical Care Survey: 2000 summary. Adv Data 2002;1–32.Google Scholar
  6. 6.
    Bisno AL: Acute pharyngitis. N Engl J Med 2001; 344:205–211.PubMedCrossRefGoogle Scholar
  7. 7.
    Bisno AL, Rubin FA, Cleary PP, Dale JB: Prospects for a group A streptococcal vaccine: rationale, feasibility, and obstacles—report of a National Institute of Allergy and Infectious Diseases Workshop. Clin Infect Dis 2005;41:1150–1156.PubMedCrossRefGoogle Scholar
  8. 8.
    Komaroff AL, Pass TM, Aronson MD, et al: The prediction of streptococcal pharyngitis in adults. J Gen Intern Med 1986;1:1–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Massell BF: Rheumatic fever and streptococal infection. Harvard University Press, Boston, 1997.Google Scholar
  10. 10.
    Cunningham MW: Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 2000;13:470–511.PubMedCrossRefGoogle Scholar
  11. 11.
    Steer AC, Carapetis JR, Nolan TM, Shann F: Systematic review of rheumatic heart disease prevalence in children in developing countries: the role of environmental factors. J Paediatr Child Health 2002;38:229–234.PubMedCrossRefGoogle Scholar
  12. 12.
    Carapetis JR, Wolff DR, Currie BJ: Acute rheumatic fever and rheumatic heart disease in the top end of Australia's Northern Territory. Med J Aust 1996;164: 146–149.PubMedGoogle Scholar
  13. 13.
    World Health Organization World Health Report. Office of Publications, World Health Organization, Geneva, 2000, pp. 164–169.Google Scholar
  14. 14.
    Carapetis J: A review of WHO activities in, the burden of, and the evidence for strategies to control group A streptococcal diseases: part 3—the current evidence for the burden of group A streptococcal diseases. University of Melbourne. Melbourne, 2004, pp. 1–49.Google Scholar
  15. 15.
    Carapetis JR, Steer, AC, Mulholland EK, Weber M: The global burden of group A streptococcal diseases. Lancet Infect Dis 2005;5:685–694.PubMedCrossRefGoogle Scholar
  16. 16.
    Thomson D, Thomson R: The role of the Streptococci in scarlet fever. Annals of the Pickett-Thomson Research Laboratory 1930;4:244–252.Google Scholar
  17. 17.
    Beachey EH, Stollerman GH, Johnson RH, Ofek I, Bisno AL. Human immune response to immunization with a structurally defined polypeptide fragment of streptococcal M protein. J Exp Med 1979;150: 862–877.PubMedCrossRefGoogle Scholar
  18. 18.
    Fox EN, Wittner MK, Dorfman A: Antigenicity of the M proteins of group A hemolytic streptococci. 3. Antibody responses and cutaneous hypersensitivity in humans. J Exp Med 1966;124:1135–1151.PubMedCrossRefGoogle Scholar
  19. 19.
    Massell BF, Michael JG, Amezcua J, Siner M: Secondary and apparent primary antibody responses after group A streptococcal vaccination of 21 children. Appl Microbiol 1968;16:509–518.PubMedGoogle Scholar
  20. 20.
    Fox EN, Pachman LM, Wittner MK, Dorfman A: Primary immunization of infants and children with group A streptococcal M protein. J Infect Dis 1969;120: 598–604.PubMedGoogle Scholar
  21. 21.
    Lyampert IM, Danilova TA, Borodyuk NA, Beletskaya LV: Mechanism of formation of antibodies to heart tissue in immunization with group A streptococci. Folia Biol (Praha) 1966;12:108–115.Google Scholar
  22. 22.
    Beachey EH, Stollerman GH: The common antigen(s) of streptococcal M protein vaccines causing hyperimmune reactions in man. Trans Assoc Am Physicians 1972; 85:212–221.PubMedGoogle Scholar
  23. 23.
    Massell BF, Honikman LH, Amezcua J: Rheumatic fever following streptococcal vaccination. Report of three cases. JAMA 1969;207:1115–1119.Google Scholar
  24. 24.
    Fox EN: M proteins of group A streptococci. Bacteriol Rev 1974;38:57–86.PubMedGoogle Scholar
  25. 25.
    Park HS, Cleary PP: Active and passive intranasal immunizations with streptococcal surface protein c5a peptidase prevent infection of murine nasal mucosa-associated lymphoid tissue, a functional homologue of human tonsils. Infect Immun 2005;73:7878–7886.PubMedCrossRefGoogle Scholar
  26. 26.
    McMillan DJ, Batzloff MR, Browning CL, et al Identification and assessment of new vaccine candidates for group A streptococcal infections. Vaccine 2004;22: 2783–2790.PubMedCrossRefGoogle Scholar
  27. 27.
    Zabriskie JB, Poon-King T, Blake MS, Michon F, Yoshinaga M: Phagocytic, serological, and protective properties of streptococcal group A carbohydrate antibodies. Adv Exp Med Biol 1997;418:917–919.PubMedGoogle Scholar
  28. 28.
    Fischetti VA, Jones KF, Hollingshead SK, Scott JR: Structure, function, and genetics of streptococcal M protein. Rev Infect Dis 1988;10(Suppl 2):S356–359.Google Scholar
  29. 29.
    Hu MC, Walls MA, Stroop SD, Reddish MA, Beall B, Dale JB: Immunogenicity of a 26-valent group A streptococcal vaccine. Infect Immun 2002;70:2171–2177.PubMedCrossRefGoogle Scholar
  30. 30.
    Kotloff KL, Corretti M, Palmer K, et al Safety and immunogenicity of a recombinant multivalent group a streptococcal vaccine in healthy adults: phase 1 trial. JAMA 2004;292:709–715.PubMedCrossRefGoogle Scholar
  31. 31.
    Bessen D, Fischetti VA: Influence of intranasal immunization with synthetic peptides corresponding to conserved epitopes of M protein on mucosal colonization by group A streptococci. Infect Immun 1988;56:2666–2672.PubMedGoogle Scholar
  32. 32.
    Dale JB, Penfound T, Chiang EY, Long V, Shulman ST, Beall B: Multivalent group A streptococcal vaccine elicits bactericidal antibodies against variant M subtypes. Clin Diagn Lab Immunol 2005;12:833–836.PubMedCrossRefGoogle Scholar
  33. 33.
    McNeil SA, Halperin SA, Langley JM, et al: Safety and immunogenicity of 26-valent group a streptococcus vaccine in healthy adult volunteers. Clin Infect Dis 2005;41:1114–1122.PubMedCrossRefGoogle Scholar
  34. 34.
    Bessen D, Fischetti VA: Passive acquired mucosal immunity to group A streptococci by secretory immunoglobulin A. J Exp Med 1988;167:1945–1950.PubMedCrossRefGoogle Scholar
  35. 35.
    Brandtzaeg P: Role of secretory antibodies in the defence against infections. Int J Med Microbiol 2003;293:3–15.PubMedCrossRefGoogle Scholar
  36. 36.
    Bronze MS, Courtney HS, Dale JB: Epitopes of group-a streptococcal M-protein that evoke cross-protective local immune-responses. J Immunol 1992;148:888–893.PubMedGoogle Scholar
  37. 37.
    Pruksakorn S, Currie B, Brandt E, et al: Towards a vaccine for rheumatic fever: identification of a conserved target epitope on M protein of group A streptococci. Lancet 1994;344:639–642.PubMedCrossRefGoogle Scholar
  38. 38.
    Pruksakorn S, Galbraith A, Houghten RA, Good MF: Conserved T and B cell epitopes on the M protein of group A streptococci. Induction of bactericidal antibodies. J Immunol 1992;149:2729–2735.PubMedGoogle Scholar
  39. 39.
    Hayman WA, Brandt ER, Relf WA, Cooper J, Saul A, Good MF: Mapping the minimal murine T cell and B cell epitopes within a peptide vaccine candidate from the conserved region of the M protein of group A streptococcus. Int Immunol 1997;9:1723–1733.PubMedCrossRefGoogle Scholar
  40. 40.
    Brandt ER, Hayman WA, Currie B, et al: Opsonic human antibodies from an endemic population specific for a conserved epitope on the M protein of group A streptococci. Immunology 1996;89:331–337.PubMedCrossRefGoogle Scholar
  41. 41.
    Batzloff M, Yan H, Davies M, Hartas J, Good M: Preclinical evaluation of a vaccine based on conserved region of M protein that prevents group A streptococcal infection. Indian J Med Res 2004;119(Suppl):104–107.PubMedGoogle Scholar
  42. 42.
    Batzloff MR, Hayman WA, Davies MR, et al: Protection against group A streptococcus by immunization with J8-diphtheria toxoid: contribution of J8- and diphtheria toxoid-specific antibodies to protection. J Infect Dis 2003;187:1598–1608.PubMedCrossRefGoogle Scholar
  43. 43.
    Batzloff MR, Yan H, Davies MR, et al: Toward the development of an antidisease, transmission-blocking intranasal vaccine for group a streptococcus. J Infect Dis 2005;192:1450–1455.PubMedCrossRefGoogle Scholar
  44. 44.
    Brandt ER, Hayman WA, Currie B, et al: Functional analysis of IgA antibodies specific for a conserved epitope within the M protein of group A streptococci from Australian Aboriginal endemic communities. Int Immunol 1999;11:569–576.PubMedCrossRefGoogle Scholar
  45. 45.
    D'Alessandri R, Plotkin G, Kluge RM, et al Protective studies with group A streptococcal M protein vaccine. III. Challenge of volunteers after systemic or intranasal immunization with Type 3 or Type 12 group A Streptococcus. J Infect Dis 1978;138:712–718.PubMedGoogle Scholar
  46. 46.
    Brandt ER, Teh T, Relf WA, Hobb RI, Good MF: Protective and nonprotective epitopes from amino termini of M proteins from Australian aboriginal isolates and reference strains of group A streptococci. Infect Immun 2000;68:6587–6594.PubMedCrossRefGoogle Scholar
  47. 47.
    Olive C, Clair T, Yarwood P, Good MF: Protection of mice from group A streptococcal infection by intranasal immunization with a peptide vaccine that contains a conserved M protein B cell epitope and lacks a T cell autoepitope. Vaccine 2002;20:2816–2825.PubMedCrossRefGoogle Scholar
  48. 48.
    Bran5dt ER, Sriprakash KS, Hobb RI, et al: New multideterminant strategy for a group A streptococcal vacciae designed for the Australian Aboriginal population. Nat Med 2000;6:455–459.CrossRefGoogle Scholar
  49. 49.
    Jackson DC, O'Brien-Simpson N, Ede NJ, Brown LE: Free radical induced polymerization of synthetic peptides into polymeric immunogens. Vaccine 1997; 15:1697–1705.PubMedCrossRefGoogle Scholar
  50. 50.
    Hantke K, Braun V: Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane. Eur J Biochem 1973;34:284–296.PubMedCrossRefGoogle Scholar
  51. 51.
    Luke CJ, Huebner RC, Kasmiersky V, Barbour AG: Oral delivery of purified lipoprotein OspA protects mice from systemic infection with Borrelia burgdorferi. Vaccine 1997;15:739–746.PubMedCrossRefGoogle Scholar
  52. 52.
    Keller D, Koster FT, Marks DH, Hosbach P, Erdile LF, Mays JP: Safety and immunogenicity of a recombinant outer surface protein A Lyme vaccine. JAMA 1994; 271:1764–1768.PubMedCrossRefGoogle Scholar
  53. 53.
    Melchers F, Braun V, Galanos C: The lipoprotein of the outer membrane of Escherichia coli: a B-lymphocyte mitogen. Exp Med 1975;142:473–482.CrossRefGoogle Scholar
  54. 54.
    Norgard MV, Arndt LL, Akins DR, Curetty LL, Harrich DA, Radolf JD: Activation of human monocytic cells by Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides proceeds via a path way distinct from that of lipopolysaccharide but involves the transcriptional activator NF-[kappa]B. Infect Immun 1996;64:3845–3852.PubMedGoogle Scholar
  55. 55.
    Kreutz M, Ackermann U, Hauschildt S, et al: A comparative analysis of cytokine production and tolerance induction by bacterial lipopeptides, lipopolysaccharides and staphyloccocus aureus in human monocytes. Immunology 1997;92:396–401.PubMedCrossRefGoogle Scholar
  56. 56.
    Wiesmuller KH, Bessler W, Jung G: Synthesis of the mitogenic S-[2,3-bis(palmitoyloxy)propyl]-N-palmitoylpentapeptide from Escherichia coli lipoprotein. Hoppe Seyler Physiol Chem 1983;364:593–606.Google Scholar
  57. 57.
    Hoffmann P, Heinle S, Schade UF, et al: Stimulation of human and murine adherent cells by bacterial lipoprotein and synthetic lipopeptide analogues. Immunobiology 1988;177:158–170.PubMedGoogle Scholar
  58. 58.
    Seifert R, Schultz G, Richter-Freund M, et al: Activation of superoxide formation and lysozyme release in human neutrophils by the synthetic lipopeptide Pam3Cys-Ser-(Lys)4. Involvement of guanine-nucleotide-binding proteins and synergism with chemotactic peptides. Biochem J 1990;267:795–802.PubMedGoogle Scholar
  59. 59.
    Berg M, Offermanns S, Seifert R, Schultz G: Synthetic lipopeptide Pam3CysSer(Lys)4 is an effective activator of human platelets. Am J Physiol 1994;266:C1684-C1691.PubMedGoogle Scholar
  60. 60.
    Wiesmuller K-H, Jung G, Hess G: Novel low-molecular-weight synthetic vaccine against foot-and-mouth disease containing a potent B-cell and macrophage activator. Vaccine 1989;7:29–33.PubMedCrossRefGoogle Scholar
  61. 61.
    Re F, Strominger J-L: Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J Biol Chem 2001;276:37692–37699.PubMedCrossRefGoogle Scholar
  62. 62.
    Takeda K, Kaisho T, Akira S: Toll-like receptors. Annu Rev Immunol 2003;21:335–376.PubMedCrossRefGoogle Scholar
  63. 63.
    Jackson DC, Lau YF, Le T, et al: A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses. Proc Natl Acad Sci USA 2004; 101:15440–15445.PubMedCrossRefGoogle Scholar
  64. 64.
    Zeng W, Ghosh S, Lau YF, Brown LE, Jackson DC: Highly immunogenic and totally synthetic lipopeptides as self-adjuvanting immunocontraceptive vaccines. J Immunol 2002;169:4905–4912.PubMedGoogle Scholar
  65. 65.
    Tam JP Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci USA 1988;85:5409–5413.PubMedCrossRefGoogle Scholar
  66. 66.
    Olive C, Batzloff MR, Toth I: Lipid core peptide technology and group A streptococcal vaccine delivery. Expert Rev Vaccines 2004;3:43–58.PubMedCrossRefGoogle Scholar
  67. 67.
    McGeary RP, Olive C, Toth I: Lipid and carbohydrate based adjuvant/carriers in immunology. J Pept Sci 2003;9:405–418.PubMedCrossRefGoogle Scholar
  68. 68.
    Olive C, Toth I, Jackson D: Technological advances in antigen delivery and synthetic peptide vaccine developmental strategies. Mini Rev Med Chem 2001;1:429–438.PubMedCrossRefGoogle Scholar
  69. 69.
    Wong A, Toth I: Lipid, sugar and liposaccharide based delivery systems. Curr Med Chem 2001;8:1123–1136.PubMedGoogle Scholar
  70. 70.
    Hayman WA, Toth I, Flinn N, Scanlon M, Good MF: Enhancing the immunogenicity and modulating the fine epitope recognition of antisera to a helical group A streptococcal peptide vaccine candidate from the M protein using lipid-core peptide technology. Immunol Cell Biol 2002;80:178–187.PubMedCrossRefGoogle Scholar
  71. 71.
    Olive C, Batzloff MR, Horvath A, et al: A lipid core peptide construct containing a conserved region determinant of the group A streptococcal M protein elicits heterologous opsonic antibodies. Infect Immun 2002;70: 2734–2738.PubMedCrossRefGoogle Scholar
  72. 72.
    Olive C, Batzloff M, Horvath A, et al: Potential of lipid core peptide technology as a novel self-adjuvanting vaccine delivery system for multiple different synthetic peptide immunogens. Infect Immun 2003;71:2373–2383.PubMedCrossRefGoogle Scholar
  73. 73.
    Olive C, Hsien K, Horvath A, et al: Protection against group A streptococcal infection by vaccination with self-adjuvanting lipid core M protein peptides. Vaccine 2005;23:2298–2303.PubMedCrossRefGoogle Scholar
  74. 74.
    Lowell G, Burt DS, White GL, Fries LF: Proteosome technology for vaccines and adjuvants; in: Levine MM, Kaper JB, Rappuoli R, Liu MA, Good MF (eds). New Generation Vaccines, 3rd ed. Marcel Dekker, New York, 2004; pp. 271–282.Google Scholar
  75. 75.
    Massari P, Henneke P, Ho Y, Latz E, Golenbock DT, Wetzler LM: Cutting edge: immune stimulation by neisserial porins is toll-like receptor 2 and MyD88 dependent. J Immunol 2002;168:1533–1537.PubMedGoogle Scholar
  76. 76.
    Mannam P, Jones KF, Geller BL: Mucosal vaccine made from live, recombinant Lactococcus lactis protects mice against pharyngeal infection with Streptococcus pyogenes. Infect Immun 2004;72:3444–3450.PubMedCrossRefGoogle Scholar
  77. 77.
    Ferretti JJ, McShan WM, Ajdic D, et al Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci USA 2001;98:4658–4663.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Michael R. Batzloff
    • 1
  • Manisha Pandey
    • 1
  • Colleen Olive
    • 1
  • Michael F. Good
    • 1
  1. 1.The Cooperative Research Centre for Vaccine Technology and the Australian Centre for International Tropical Health and Nutrition, The Queensland Institute of Medical ResearchPost Office Royal Brisbane HospitalBrisbaneAustralia

Personalised recommendations