TH2 cells in the pathogenesis of airway remodeling

Regulatory T cells a plausible panacea for asthma

  • 305 Accesses

  • 36 Citations


T-helper type 2 (TH2) cells are one of the hallmarks of airway remodeling. The daunting task of regaining tolerance will be to regulate airway hyperresponsiveness (AHR) and remodeling in chronic asthma by balancing the ballet of TH1 and TH2 cells. The mechanism of tolerance appears to be modulated by a specialized subset of T cells called regulatory T cells (Tregs). Currently there are six subtypes of Tregs including CD4+CD25+ naturally occurring (N-Tregs), inducible naïve CD4+CD25T cells (TR1), TR1 memory phenotype, T-helper type 3 (TH3), CD4CD25+DX5+ natural killer T cells (TRNKT), and CD4CD25+CD8+ cytotoxic T cells (TRCTC). The development of Tregs is controversial as to whether they occur in the thymus or peripheral lymphoid tissue. Studies have shown that N-Tregs are generated in the thymus and TR1 cells occur in the periphery. Nevertheless, Tregs express an arsenal of molecular membrane markers: CD3, CD25, CD62L, CD69, BTLA, GITR, ICOS, Neuroplin-1 (Nrp-1), and PD-1. However, the most definitive marker is Forkhead Winged-Helix Transcriptional Factor Box p3 (Foxp3). The suppression of N-Tregs occurs by cell-to-cell contact, and low levels of IL-10 and moderate levels of TGF-β, but the primary mechanism involves the sequestration and activation of neighboring naïve CD4+CD25T cells to become TR1 cells. In contrast, TR1 cells exert their suppressive properties by copious secretion of IL-10 and TGF-β. These suppressive mechanisms occur by the inhibition of IL-2 production and the promotion of cell cycle arrest. The development of this specialized subset of T cells is an enigma, but their understanding will provide a plausible panacea for asthma.

This is a preview of subscription content, log in to check access.


  1. 1.

    Walker JK, Fong AM, Lawson BL, et al: Beta-arrestin-2 regulates the development of allergic asthma. J Clin Invest 2003;112:566–574.

  2. 2.

    Piccirillo CA, Tritt M, Sgouroudis E, et al: Control of type 1 autoimmune diabetes by naturally occurring CD4+CD25+ regulatory T lymphocytes in neonatal NOD mice. Ann NY Acad Sci 2005;1051:72–87.

  3. 3.

    Sakaguchi S: Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005;6: 345–352.

  4. 4.

    Chen W, Jin W, Hardegen N, et al: Conversion of peripheral CD4+. J Exp Med 2003;198:1875–1886.

  5. 5.

    Ebata K, Shimizu Y, Nakayama Y, et al: Immature NK cells supress dendritic cell functions during the development of leukemia in a mouse model. J Immunol 2006;176:4113–4124.

  6. 6.

    Bienvenu B, Martin B, Auffray C, et al: Peripheral CD8+CD25+T lymphocytes from MHC class II-deficient mice exhibit regulatory activity. J Immunol 2005;175:246–253.

  7. 7.

    Oldenhove G, de HM, Urbain-Vansanten G, et al: CD4+CD25+ regulatory T cells control T helper cell type 1 responses to foreign antigens induced by mature dendritic cells in vivo. J Exp Med 2003;198:259–266.

  8. 8.

    Jonuleit H, Schmitt E: The regulatory T cell family: distinct subsets and their interrelations. J Immunol 2003;171:6323–6327.

  9. 9.

    Nakamura K, Kitani A, Strober W: Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 2001;194: 629–644.

  10. 10.

    Mazzarella G, Bianco A, Catena E, et al: Th1/Th2 lymphocyte polarization in asthma. Allergy 2000;55(Suppl 61):6–9.

  11. 11.

    Tournoy KG, Kips JC, Pauwels RA. Is Th1 the solution for Th2 in asthma? Clin Exp Allergy 2002;32:17–29.

  12. 12.

    Glimcher LH, Murphy KM: Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev 2000;14:1693–1711.

  13. 13.

    Weigmann B, Neurath MF: T-bet and mucosal Th1 responses in the gastrointestinal tract. Gut 2002;51: 301–303.

  14. 14.

    Komine O, Hayashi K, Natsume W, et al: The Runx1 transcription factor inhibits the differentiation of naive CD4+T cells into the Th2 lineage by repressing GATA3 expression. J Exp Med 2003;198:51–61.

  15. 15.

    Kay AB, Phipps S, Robinson DS: A role for eosinophils in airway remodelling in asthma. Trends Immunol 2004;25:477–482.

  16. 16.

    Henderson WR, Jr, Tang LO, Chu SJ, et al: A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model. Am J Respir Crit Care Med 2002;165: 108–116.

  17. 17.

    Mackay CR: Chemokine receptors and T cell chemotaxis. J Exp Med 1996;184:799–802.

  18. 18.

    Yamazaki T, Akiba H, Iwai H, et al: Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 2002;169:5538–5545.

  19. 19.

    Nocentini G, Riccardi C: GITR: a multifaceted regulator of immunity belonging to the tumor necrosis factor receptor superfamily. Eur J Immunol 2005;35:1016–1022.

  20. 20.

    Yamazaki T, Akiba H, Iwai H, et al: Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 2002;169:5538–5545.

  21. 21.

    Dieckmann D, Bruett CH, Ploettner H, et al: Human CD4(+)CD25(+) regulatory, contact-dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells [corrected]. J Exp Med 2002;196:247–253.

  22. 22.

    Ponsomby AL, Couper D, Dwyer T, et al: Relationship between early life respiratory illness, family size over time, and the development of asthma and hay fever: a seven year follow up study. Thorax 1999;54:664–669.

  23. 23.

    Salam MT, Li YF, Langholz B, et al: Larly-life environmental risk factors for asthma: findings from the Children's Health Study. Environ Health Perspect 2004; 112:760–765.

  24. 24.

    Yagi H, Nomura T, Nakamura K, et al: Crucial role of FOXP 3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol 2004; 16:1643–1656.

  25. 25.

    Akbari O, Stock P, Dekruyff RH, et al: Role of regulatory T cells in allergy and asthma. Curr Opin Immunol 2003;15:627–633.

  26. 26.

    Piccirillo CA, Thornton AM: Cornerstone of peripheral tolerance: naturally occurring CD4+CD25+ regulatory T cells. Trends Immunol 2004;25:374–380.

  27. 27.

    Cohn L: Food for thought: can immunological tolerance be induced to treat asthma. Am J Respir Cell Mol Biol 2001;24:509–512.

  28. 28.

    Wirtz S, Neurath MF: Animal models of intestinal inflammation: new insights into the molecular pathogenesis and immunotherapy of inflammatory bowel disease. Int J Colorectal Dis 2000;15(3):144–160.

  29. 29.

    Kemper, C, Chan AC, Green JM, et al.: Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 2003;421:388–392.

  30. 30.

    Levings MK, Sangregorio R, Sartirana C, et al: Human CD25+CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. J Exp Med 2002;196:1335–1346.

  31. 31.

    Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL: Regualtory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994;265(5176):1237–1240.

  32. 32.

    Horwitz DA, Gray JD, Zheng SG: The potential of human regulatory T cells generated ex vivo as a treatment for lupus and other chronic inflammatory diseases. Arthritis Res 2002;4:241–246.

  33. 33.

    Horwitz DA, Zheng SG, Gray JD: The role of the combination of IL-2 and TGF-beta or IL-10 in the generation and function of CD4+ CD25+ and CD8+ regulatory T cell subsets. J Leukoc Biol 2003;74:471–478.

  34. 34.

    Yamagiwa S, Gray JD, Hashimoto S, et al: A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol 2001;166:7282–7289.

  35. 35.

    Myers L, Takahashi C, Mittler RS, et al: Effector CD8 T cells possess suppressor function after 4-1BB and Toll-like receptor triggering. Proc Natl Acad Sci USA 2003;100:5348–5353.

  36. 36.

    Seo SK, Park HY, Choi JH, et al: Blocking 4-1BB/4-1BB ligand interactions prevents herpetic stromal keratitis. J Immunol 2003;171:576–583.

  37. 37.

    Akbari O, Stock P, Meyer E, et al: Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 2003;9:582–588.

  38. 38.

    Kronenberg M: Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 2005;23:877–900.

  39. 39.

    Jiang H, Chess L: An integrated view of suppressor T cell subsets in immunoregulation. J Clin Invest 2004; 114:1198–1208.

  40. 40.

    Ostroukhova M, Seguin-Devaux C, Oriss TB, et al: Tolerance induced by inhaled antigen involves CD4(+) T cells expressing membrane-bound TGF-beta and FOXP3. J Clin Invest 2004;114:28–38.

  41. 41.

    Morel PA, Feili-Hariri M, Coates PT, et al: Dendritic cells, T cell tolerance and therapy of adverse immune reactions. Clin Exp Immunol 2003;133:1–10.

  42. 42.

    Akbari O, Dekruyff RH, Umetsu DT: Pulmonary dendriticv cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2001;2: 725–731.

  43. 43.

    Stock P, Akbari O, Berry G, et al: Induction of T helper type 1-like regulatory cells that express Foxp3 and protect against airway hyper-reactivity. Nat Immunol 2004;5:1149–1156.

  44. 44.

    Gondek DC, Lu LF, Quezada SA, et al: Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol 2005;174: 1783–1786.

  45. 45.

    Lord SJ, Rajotte RV, Korbutt GS, et al: Granzyme B: a natural born killer. Immunol Rev 2003;193:31–38.

  46. 46.

    Appay V, Zaunders JJ, Papagno L, et al: Characterization of CD4(+) CTLs ex vivo. J Immunol 2002;168: 5954–5958.

  47. 47.

    Grossman WJ, Verbsky JW, Tollefsen BL, Kemper C, Atkinson JP, Ley TJ. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 2004;104(9):2840–2848.

  48. 48.

    Greenwald RJ, Freeman GJ, Sharpe AH: The B7 family revisited. Annu Rev Immunol 2005;23:515–548.

  49. 49.

    Sharpe AH, Freeman GJ: The B7-CD28 superfamily. Nat Rev Immunol 2002;2:116–126.

  50. 50.

    Ishida Y, Agata Y, Shibahara K, et al: Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO j 1992;11:3887–3895.

  51. 51.

    Yamazaki T, Akiba H, Iwai H, et al: Expression of death I ligands by murine T cells and APC. J Immunol 2002;169:5538–5545.

  52. 52.

    Agata Y, Kawasaki A, Nishimura H, et al: Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 1996;8:765–772.

  53. 53.

    Vibhakar R, Juan G, Traganos F, et al: Activation-induced expression of human programmed death-1 gene in T-lymphocytes. Exp Cell Res 1997;232: 25–28.

  54. 54.

    Watanabe N, Gavrieli M, Sedy JR, et al: BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 2003;4:670–679.

  55. 55.

    Bruder D, Probst-Kepper M, Westendorf AM, et al: Neuropilin-1: a surface marker of regulatory T cells. Eur J Immunol 2004;34:623–630.

  56. 56.

    Tordjman R, Lepelletier Y, Lemarchandel V, et al: A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response. Nat Immunol 2002;3: 477–482.

  57. 57.

    Antov A, Yang L, Vig M, et al: Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance. J Immunol 2003;171:3435–3441.

  58. 58.

    Burchill MA, Goetz CA, Prlic M, et al: Distinct effects of STAT5 activation on CD4+ and CD8+T cell homeostasis: development of CD4+CD25+ regulatory T cells versus CD8+ memory T cells. J Immunol 2003;171:5853–5864.

  59. 59.

    Godfrey VL, Wilkinson JE, Russell LB X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am J Pathol 1991;138:1379–1387.

  60. 60.

    Godfrey VL, Wilkinson JE, Rinchik EM, et al: Fatal lymphoreticular disease in the scurfy (sf) mouse requires T cells that mature in a sf thymic environment: potential model for thymic education. Proc Natl Acad Sci USA 1991;88:5528–5532.

  61. 61.

    Godfrey VL, Rouse BT, Wilkinson JE: Transplantation of T cell-mediated, lymphoreticular disease from the scurfy (sf) mouse. Am J Pathol 1994;145:281–286.

  62. 62.

    Kanangat S, Blair P, Reddy R, et al: Disease in the scurfy (sf) mouse is associated with overexpression of cytokine genes. Eur J Immunol 1996;26:161–165.

  63. 63.

    Kasprowicz DJ, Smallwood PS, Tyznik AJ, et al: Scurfin (FOXP3) controls T-dependent immune responses in vivo through regulation of CD4+ T cell effector function. J Immunol 2003;171:1216–1223.

  64. 64.

    Chatila TA, Blaeser F, Ho N, et al: JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 2000;106:R75-R81.

  65. 65.

    Powell BR, Buist NR, Stenzel P: An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 1982;100:731–737.

  66. 66.

    Satake N, Nakanishi M, Okano M, et al: A Japanese family of X-linked auto-immune enteropathy with haemolytic anaemia and polyendocrinopathy. Eur J Pediatr 1993;152:313–315.

  67. 67.

    Bennett CL, Christie J, Ramsdell F, et al: The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001;27:20–21.

  68. 68.

    Brunkow ME, Jeffery EW, Hjerrild KA, et al: Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001;27:68–73.

  69. 69.

    Khattri R, Cox T, Yasayko SA, et al: An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003;4:337–342.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McGee, H.S., Agrawal, D.K. TH2 cells in the pathogenesis of airway remodeling. Immunol Res 35, 219–231 (2006).

Download citation

Key Words

  • Airway remodeling
  • Asthma
  • Fox P3
  • Inflammatory cytokines
  • PD-1
  • Th-2 cells
  • T-regulatory cells
  • TR-1 cells