Immunologic Research

, Volume 35, Issue 1–2, pp 27–39

Interferons and viruses

Signaling for supremacy
  • C. L. Galligan
  • T. T. Murooka
  • R. Rahbar
  • E. Baig
  • B. Majchrzak-Kita
  • E. N. Fish
Article

Abstract

Interferon (IFN)-α and IFN-β are critical mediators of host defense against microbial challenges, directly interfering with viral infection and influencing both the innate and adaptive immune responses. IFNs exert their effects in target cells through the activation of a cell-surface receptor, leading to a cascade of signaling events that determine transcriptional and translation regulation. Understanding the circuitry associated with IFN-mediated signal transduction that leads to a specific biological outcome has been a major focus of our laboratory. Through the efforts of graduate students, postdoctoral fellows, a skilled research technologist, and important collaborations with investigators elsewhere, we have provided some insights into the complexity of the IFN system—and the elegance and simplicity of how protein-protein interactions define biological function.

Key Words

Interferon Signal transduction Antiviral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Isaacs A, Lindenmann J: Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 1957;147:258–267.PubMedGoogle Scholar
  2. 2.
    Brierley MM, Fish EN: IFN-alpha/beta receptor interactions to biologic outcomes: understanding the circuitry. J Interferon Cytokine Res 2002;22:835–845.PubMedCrossRefGoogle Scholar
  3. 3.
    Chen J, Baig E, Fish EN: Diversity and relatedness among the type I interferons. J Interferon Cytokine Res 2004;24:687–698.PubMedGoogle Scholar
  4. 4.
    Deonarain R, Chan DCM, Platanias LC, Fish EN: Interferon-α/β-receptor interactions: a complex story unfolding. Curr Pharm Des 2002;8:2131–2137.PubMedCrossRefGoogle Scholar
  5. 5.
    Uze G, Lutfalla G, Gresser I: Genetic transfer of a functional human interferon alpha receptor into mouse cells: cloning and expression of its cDNA. Cell 1990;60:225–234.PubMedCrossRefGoogle Scholar
  6. 6.
    Lutfalla G, Holland SJ, Cinato E, et al: Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster. EMBO J 1995;14:5100–5108.PubMedGoogle Scholar
  7. 7.
    Domanski P, Witte M, Kellum M, et al: Cloning and expression of a long form of the beta subunit of the interferon alpha beta receptor that is required for signaling. J Biol Chem 1995;270:21606–21611.PubMedCrossRefGoogle Scholar
  8. 8.
    Ghislain J, Lingwood CA, Fish EN: Evidence for glycosphingolipid modification of the type 1 interferon receptor. J Immunol 1994;153:3655–3663.PubMedGoogle Scholar
  9. 9.
    Platanias LC: Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 2005;5:375–386.PubMedCrossRefGoogle Scholar
  10. 10.
    Brierley MM, Fish EN: Stats: multifaceted regulators of transcription. J Interferon Cytokine Res 2005;25:733–744.PubMedCrossRefGoogle Scholar
  11. 11.
    Ghislain JJ, Fish EN: Application of genomic DNA affinity chromatography identifies multiple interferon-alpha-regulated Stat2 complexes. J Biol Chem 1996; 271:12408–12413.PubMedCrossRefGoogle Scholar
  12. 12.
    Li X, Leung S, Qureshi S, Darnell JE Jr, Stark GR: Formation of STAT1-STAT2 heterodimers and their role in the activation of IRF-1 gene transcription by interferonalpha. J Biol Chem 1996;271:5790–5794.PubMedCrossRefGoogle Scholar
  13. 13.
    Ghislain JJ, Wong T, Nguyen M, Fish EN: The interferon-inducible Stat2:Stat1 heterodimer preferentially binds in vitro to a consensus element found in the promoters of a subset of interferon-stimulated genes. J Interferon Cytokine Res 2001;21:379–388.PubMedCrossRefGoogle Scholar
  14. 14.
    Brierley MM, Fish EN: Functional relevance of the conserved DNA-binding domain of STAT2. J Biol Chem 2005;280:13029–13036.PubMedCrossRefGoogle Scholar
  15. 15.
    Ahmad S, Alsayed YM, Druker BJ, Platanias LC: The type I interferon receptor mediates tyrosine phosphorylation of the CrkL adaptor protein. J Biol Chem 1997;272:29991–29994.PubMedCrossRefGoogle Scholar
  16. 16.
    Fish EN, Uddin S, Korkmaz M, Majchrzak B, Druker BJ, Platanias LC: Activation of a CrkL-stat5 signaling complex by type I interferons. J Biol Chem 1999;274:571–573.PubMedCrossRefGoogle Scholar
  17. 17.
    Uddin S, Lekmine F, Sassano A, Rui H, Fish EN, Platanias LC: Role of Stat5 in type I interferon-signaling and transcriptional regulation. Biochem Biophys Res Commun 2003;308:325–330.PubMedCrossRefGoogle Scholar
  18. 18.
    Uddin S, Majchrzak B, Woodson J, et al: Activation of the p38 mitogen-activated protein kinase by type I interferons. J Biol Chem 1999;274:30127–30131.PubMedCrossRefGoogle Scholar
  19. 19.
    Uddin S, Lekmine F, Sharma N, et al: The Rac1/p38 mitogen-activated protein kinase pathway is required for interferon alphadependent transcriptional activation but not serine phosphorylation of Stat proteins. J Biol Chem 2000;275:27634–27640.PubMedGoogle Scholar
  20. 20.
    Platanias LC, Sweet ME: Interferon alpha induces rapid tyrosine phosphorylation of the vav proto-oncogene product in hematopoietic cells. J Biol Chem 1994;269:3143–3146.PubMedGoogle Scholar
  21. 21.
    Li Y, Batra S, Sassano A, et al: Activation of mitogen-actiovated protein kinas kinase (MKK)3 and MKK6 by type I interferons. J Biol Chem 2005;280:1001–10010.Google Scholar
  22. 22.
    Li Y, Sassano A, Majchrzak B, et al: Role of p38α Map kinase in type I interferon signaling. J Biol Chem 2004;279:970–979.PubMedCrossRefGoogle Scholar
  23. 23.
    Clayton AL, Mahadevan LC: MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett 2005;546:51–58.CrossRefGoogle Scholar
  24. 24.
    Burfoot MS, Rogers NC, Watling D, et al: Janus kinase-dependent activation of insulin receptor substrate 1 in response to interleukin-4, oncostatin M, and the interferons. J Biol Chem 1997;272:24183–24190.PubMedCrossRefGoogle Scholar
  25. 25.
    Platanias LC, Uddin S, Yetter A, Sun XJ, White MF: The type I interferon receptor mediates tyrosine phosphorylation of insulin receptor substrate 2. J Biol Chem 1996;271:278–282.PubMedCrossRefGoogle Scholar
  26. 26.
    Uddin S, Fish EN, Sher D, et al: The IRS-pathway operates distinctively from the Stat-pathway in hematopoietic cells and transduces common and distinct signals during engagement of the insulin or interferon-alpha receptors. Blood 1997;90:2574–2582.PubMedGoogle Scholar
  27. 27.
    Uddin S, Majchrzak B, Wang PC, et al: Interferon-dependent activation of the serine kinase PI-3′ kinase requires engagement of the IRS pathway but not the Stat pathway. Biochem Biophys Res Commun 2000;270:158–162.PubMedCrossRefGoogle Scholar
  28. 28.
    Lekmine F, Uddin S, Sassano A, et al: Activation of the p70 S6 kinase and phosphorylation of the 4E-BP1 repressor of mRNA translation by type I interferons. J Biol Chem 2003;278:27772–27780.PubMedCrossRefGoogle Scholar
  29. 29.
    Uddin S, Sassano A, Deb DK, et al: Protein kinase C-delta (PKC-delta) is activated by type I interferons and mediates phosphorylation of Stat1 on serine 727. J Biol Chem 2002;277:14408–14416.PubMedCrossRefGoogle Scholar
  30. 30.
    Prejean C, Sarma T, Kurnasov O, et al: Phosphatidylinositol 3-kinase confers resistance to encephalomyocarditis and herpes simplex virus-induced cell death through the activation of distinct downstream effectors. J Immunol 2001;167:453–459.Google Scholar
  31. 31.
    Deonarain R, Alcami A, Alexiou M, Dallman MJ, Gewert DR, Porter AC: Impaired antiviral response and alpha/beta interferon induction in mice lacking beta interferon. J Virol 2000;74:3404–3409.PubMedCrossRefGoogle Scholar
  32. 32.
    Deonarain R, Cerullo D, Fuse K, Liu PP, Fish EN: Protective role for interferon-beta in coxsackievirus B3 infection. Circulation 2004;110:3540–3543.PubMedCrossRefGoogle Scholar
  33. 33.
    Hwang SY, Hertzog PJ, Holland KA, et al: A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses. Proc Natl Acad Sci USA 1995;92:11284–11288.PubMedCrossRefGoogle Scholar
  34. 34.
    Durbin JE, Fernandez-Sesma A, Lee CK, et al: Type I IFN modulates innate and specific antiviral immunity. J Immunol 2000;164:4220–4228.PubMedGoogle Scholar
  35. 35.
    Bray M: The role of the type I interferon response in the resistance of mice to filovirus infection. J Gen Virol 2001;82:1365–1373.PubMedGoogle Scholar
  36. 36.
    Wessely R, Klingel K, Knowlton KU, Kandolf R: Cardios-elective infection with coxsackievirus B3 requires intact type I interferon signaling: implications for mortality and early viral replication. Circulation 2001;103(5):756–761.PubMedGoogle Scholar
  37. 37.
    Durbin JE, Hackenmiller R, Simon MC, Levy DE: Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 1996;84:443–450.PubMedCrossRefGoogle Scholar
  38. 38.
    Vancott JL, McNeal MM, Choi AH, Ward RL: The role of interferons in rotavirus infections and protection. J Interferon Cytokine Res 2003;23:163–170.PubMedCrossRefGoogle Scholar
  39. 39.
    Shresta S, Sharar KL, Prigozhin DM, Snider HM, Beatty PR, Harris E: Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. J Immunol 2005;175:3946–3954.PubMedGoogle Scholar
  40. 40.
    Hashimoto K, Durbin JE, Zhou W, et al: Respiratory syncytial virus infection in the absence of STAT 1 results in airway dysfunction, airway mucus, and augmented IL-17 levels. J Allergy Clin Immunol 2005;116:550–557.PubMedCrossRefGoogle Scholar
  41. 41.
    Park C, Li S, Cha E, Schindler C: Immune response in Stat2 knockout mice. Immunity 2000;13:795–804.PubMedCrossRefGoogle Scholar
  42. 42.
    Strobl B, Bubic I, Bruns U, et al: Novel functions of tyrosine kinase 2 in the antiviral defense against murine cytomegalovirus. J Immunol 2005;175:4000–4008.PubMedGoogle Scholar
  43. 43.
    Heim A, Stille-Seigener M, Pring-Akerblom P, et al: Recombinant Interferons beta and gamma have a higher antiviral activity than interferon-alpha in coxsackievirus B3-infected carrier state cultures of human myocardial fibroblasts. J Interferon Cytokine Res 1996;16:283–287.PubMedGoogle Scholar
  44. 44.
    Teige I, Treschow A, Teige A, et al: IFN-beta gene deletion leads to augmented and chronic demyelinating experimental autoimmune encephalomyelitis. J Immunol 2003;170:4776–4784.PubMedGoogle Scholar
  45. 45.
    Alton K, Stabinsky Y, Richards R, et al: Production, characterization and biological effects of recombinant DNA derived humans IFN-α and IFN-γ analogs; in De Maeyer E, Schellekens, H (eds); The biology of the IFN system. Elsevier-Science, 1983, pp. 119–128.Google Scholar
  46. 46.
    Blatt LM, Davis JM, Klein SB, Taylor MW: The biologic activity and molecular characterization of a novel synthetic IFN-alpha species, consensus IFN. J Interferon Res 1996;16:489–499.CrossRefGoogle Scholar
  47. 47.
    Loutfy MR, Blatt LM, Siminovitch KA, et al: Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrom. J Am Med Assoc 2003;290:3222–3228.CrossRefGoogle Scholar
  48. 48.
    Zorzitto J, Galligan CL, Ueng JJM, Fish EN: Characterization of the antiviral effects of interferon-α against a SARS-like coronavirus infection in vitro. Cell Res 2006;16:220–229.PubMedCrossRefGoogle Scholar
  49. 49.
    Basler CF, Garcia-Sastre A: Viruses and the type I interon antiviral system: induction and evasion. Int Rev Immunol 2002;21:305–337.PubMedCrossRefGoogle Scholar
  50. 50.
    Katze MG, He Y, Gale M Jr: Viruses and interferon: a fight for supremacy. Nature Rev Immunol 2002;2:675–687.CrossRefGoogle Scholar
  51. 51.
    Spiegel M, Pichlmair A, Martinez-Sobrido L, et al: Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J Virol 2005;79:2079–2086.PubMedCrossRefGoogle Scholar
  52. 52.
    Mahalingam S, Clark K, Matthaei KI, Foster PS: Antiviral potential of chemokines. Bioessays 2001;23:428–435.PubMedCrossRefGoogle Scholar
  53. 53.
    McFadden G: Poxvirus tropism. Nat Rev Microbiol 2005;3:201–213.PubMedCrossRefGoogle Scholar
  54. 54.
    Seet BT, Johnston JB, Brunetti CR, et al: Poxviruses and immune evasion. Annu Rev Immunol 2003;21:377–423.PubMedCrossRefGoogle Scholar
  55. 55.
    Sodhi A, Montaner S, Gutkind JS: Viral hijacking of G-protein-coupled-receptor signalling networks. Nat Rev Mol Cell Biol 2004;5:998–1012.PubMedCrossRefGoogle Scholar
  56. 56.
    Couty JP, Gershengorn MC: G-protein-coupled receptors encoded by human herpesviruses. Trends Pharmacol Sci 2005;26:405–411.PubMedCrossRefGoogle Scholar
  57. 57.
    Nicholas J: Human gammaherpesvirus cytokines and chemokine receptors. J Interferon Cytokine Res 2005; 25:373–383.PubMedCrossRefGoogle Scholar
  58. 58.
    Lalani AS, Masters J, Zeng W, et al: Use of chemokine receptors by poxviruses. Science 1999;286:1968–1971.PubMedCrossRefGoogle Scholar
  59. 59.
    Masters J, Hinek AA, Uddin S, et al: Poxvirus infection rapidly activates tyrosine kinase signal transduction. J Biol Chem 2001;276:48371–48375.PubMedCrossRefGoogle Scholar
  60. 60.
    Wong M, Fish EN: RANTES and MIP-1alpha activate stats in T cells. J Biol Chem 1998;273:309–314.PubMedCrossRefGoogle Scholar
  61. 61.
    Wong M, Uddin S, Majchrzak B, et al: Rantes activates Jak2 and Jak3 to regulate engagement of multiple signaling pathways in T cells. J Biol Chem 2001;276:11427–11431.PubMedCrossRefGoogle Scholar
  62. 62.
    Rahbar R, Hinek AA, Murooka TT, et al: Vaccinia virus activation of CCR5 invokes tyrosine phosphorylation signaling events that support virus replication. J Virol 2006;80:7245–7249.PubMedCrossRefGoogle Scholar
  63. 63.
    Wang F, Ma Y, Barrett JW, et al: Disruption of Erk-dependent type I interferon induction breaks the myxoma virus species barrier. Nat Immunol 2004;5:1266–1274.PubMedCrossRefGoogle Scholar
  64. 64.
    Johnston JB, Nazarian SH, Natale R, McFadden G: Myxoma virus infection of primary human fibroblasts varies with cellular age and is regulated by host interferon responses. Virol 2005;332:235–248.CrossRefGoogle Scholar
  65. 65.
    Colamonici OR, Domanski P, Sweitzer SM, Larner A, Buller RM: Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon alpha transmembrane signaling. J Biol Chem 1995;270:15974–15978.PubMedCrossRefGoogle Scholar
  66. 66.
    Symons JA, Alcami A, Smith GL: Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 1995;81:551–560.PubMedCrossRefGoogle Scholar
  67. 67.
    Chang HW, Watson JC, Jacobs BL: The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci USA 1992;89:4825–4829.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • C. L. Galligan
    • 1
    • 2
  • T. T. Murooka
    • 1
    • 2
  • R. Rahbar
    • 1
    • 2
  • E. Baig
    • 1
    • 2
  • B. Majchrzak-Kita
    • 1
    • 2
  • E. N. Fish
    • 1
    • 2
  1. 1.Department of ImmunologyUniversity of TorontoTorontoCanada
  2. 2.Toronto General Research InstituteUniversity Health NetworkTorontoCanada

Personalised recommendations