Immunologic Research

, Volume 35, Issue 1–2, pp 151–162

Assembly of MHC class I molecules within the endoplasmic reticulum



MHC class I molecules bind cytosolically derived peptides within the endoplasmic reticulum (ER) and present them at the cell surface to cytotoxic T cells. A major focus of our laboratory has been to understand the functions of the diverse proteins involved in the intracellular assembly of MHC class I molecules. These include the molecular chaperones calnexin and calreticulin, which enhance the proper folding and subunit assembly of class I molecules and also retain assembly intermediates within the ER; ERp57, a thiol oxidoreductase that promotes heavy chain disulfide formation and proper assembly of the peptide loading complex; tapasin which recruits class I molecules to the TAP peptide transporter and enhances the loading of high affinity peptide ligands; and Bap31, which is involved in clustering assembled class I molecules at ER exit sites for export along the secretory pathway. This review describes our contributions to elucidating the functions of these proteins; the combined effort of many dedicated students and post-doctoral fellows.

Key Words

Class I histocompatibility molecules Antigen presentation Molecular chaperones Endoplasmic reticulum Calnexin Calreticulin Tapasin TAP Bap31 ERp57 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Degen E, Williams DB: Participation of a novel 88-kD protein in the biogenesis of murine class I histocompatibility molecules. J Cell Biol 1991;112:1099–1115.PubMedCrossRefGoogle Scholar
  2. 2.
    Hochstenbach F, David V, Watkins S, Brenner MB: Endoplasmic reticulum resident protein of 90 kilodaltons associates with the T- and B-cell antigen receptors and major histocompatibility complex antigens during their assembly. Proc Natl Acad Sci USA 1992;89:4734–4738.PubMedCrossRefGoogle Scholar
  3. 3.
    Schrag JD, Bergeron JJ, Li Y, et al.: The structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol Cell 2001;8:633–644.PubMedCrossRefGoogle Scholar
  4. 4.
    Wada I, Rindress D, Cameron PH, et al.: SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem 1991;266:19599–19610.PubMedGoogle Scholar
  5. 5.
    Ellgaard L, Riek R, Herrmann T, et al.: NMR structure of the calreticulin P-domain. Proc Natl Acad Sci USA 2001;98:3133–3138.PubMedCrossRefGoogle Scholar
  6. 6.
    Hammond C, Braakman I, Helenius A: Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci USA 1994;91:913–917.PubMedCrossRefGoogle Scholar
  7. 7.
    Ou WJ, Cameron PH, Thomas DY, Bergeron JJ: Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 1993;364:771–776.PubMedCrossRefGoogle Scholar
  8. 8.
    Spiro RG, Zhu Q, Bhoyroo V, Soling HD: Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J Biol Chem 1996;271:11588–11594.PubMedCrossRefGoogle Scholar
  9. 9.
    Ware FE, Vassilakos A, Peterson PA, Jackson MR, Lehrman MA, Williams DB: The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem 1995;270:4697–4704.PubMedCrossRefGoogle Scholar
  10. 10.
    Leach MR, Cohen-Doyle MF, Thomas DY, Williams DB: Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. J Biol Chem 2002;277:29686–29697.PubMedCrossRefGoogle Scholar
  11. 11.
    Frickel EM, Riek R, Jelesarov I, Helenius A, Wuthrich K, Ellgaard L: TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc Natl Acad Sci USA 2002;99:1954–1959.PubMedCrossRefGoogle Scholar
  12. 12.
    Pollock S, Kozlov G, Pelletier MF, et al: Specific interaction of ERp57 and calnexin determined by NMR spectroscopy and an ER two-hybrid system. EMBO J 2004;23:1020–1029.PubMedCrossRefGoogle Scholar
  13. 13.
    Ihara Y, Cohen-Doyle MF, Saito Y, Williams DB: Calnexin discriminates between protein conformational states and functions as a molecular chaperone in vitro. Mol Cell 1999;4:331–341.PubMedCrossRefGoogle Scholar
  14. 14.
    Saito Y, Ihara Y, Leach MR, Cohen-Doyle MF, Williams DB: Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J 1999;18:6718–6729.PubMedCrossRefGoogle Scholar
  15. 15.
    Vassilakos A, Cohen-Doyle MF, Peterson PA, Jackson MR, Williams DB: The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J 1996;15:1495–1506.PubMedGoogle Scholar
  16. 16.
    Tector M, Salter RD: Calnexin influences folding of human class I histocompatibility proteins but not their assembly with beta 2-microglobulin. J Biol Chem 1995;270:19638–19642.PubMedCrossRefGoogle Scholar
  17. 17.
    Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P: Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 1996;5:103–114.PubMedCrossRefGoogle Scholar
  18. 18.
    Danilczyk UG, Williams DB: The lectin chaperone calnexin utilizes polypeptide-based interactions to associate with many of its substrates in vivo. J Biol Chem 2001;276:25532–25540.PubMedCrossRefGoogle Scholar
  19. 19.
    Leach MR, Williams DB: Lectin-deficient calnexin is capable of binding class I histocompatibility molecules in vivo and preventing their degradation. J Biol Chem 2004;279:9072–9079.PubMedCrossRefGoogle Scholar
  20. 20.
    Jackson MR, Cohen-Doyle MF, Peterson PA, Williams DB: Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science 1994;263:384–387.PubMedCrossRefGoogle Scholar
  21. 21.
    Sadasivan BK, Cariappa A, Waneck GL, Cresswell P: Assembly, peptide loading, and transport of MHC class I molecules in a calnexin-negative cell line. Cold Spring Harb Symp Quant Biol 1995;60:267–275.PubMedGoogle Scholar
  22. 22.
    Scott JE, Dawson JR: MHC class I expression and transport in a calnexin-deficient cell line. J Immunol 1995;155:143–148.PubMedGoogle Scholar
  23. 23.
    Balow JP, Weissman JD, Kearse KP: Unique expression of major histocompatibility complex class I proteins in the absence of glucose trimming and calnexin association. J Biol Chem 1995;270:29025–29029.PubMedCrossRefGoogle Scholar
  24. 24.
    Molinari M, Eriksson KK, Calanca V, et al.: Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol Cell 2004;13:125–135.PubMedCrossRefGoogle Scholar
  25. 25.
    Gao B, Adhikari R, Howarth M, et al: Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. Immunity 2002;16:99–109.PubMedCrossRefGoogle Scholar
  26. 26.
    Danilczyk UG, Cohen-Doyle MF, Williams DB: Functional relationship between calreticulin, calnexin, and the endoplasmic reticulum luminal domain of calnexin. J Biol Chem 2000;275:13089–13097.PubMedCrossRefGoogle Scholar
  27. 27.
    Antoniou AN, Ford S, Alphey M, Osborne A, Elliott T, Powis SJ: The oxidoreductase ERp57 efficiently reduces partially folded in preference to fully folded MHC class I molecules. EMBO J 2002;21:2655–2663.PubMedCrossRefGoogle Scholar
  28. 28.
    Frickel EM, Frei P, Bouvier M, et al: ERp57 is a multifunctional thiol-disulfide oxidoreductase. J Biol Chem 2004;279:18277–18287.PubMedCrossRefGoogle Scholar
  29. 29.
    Zapun A, Darby NJ, Tessier DC, Michalak M, Bergeron JJ, Thomas DY: Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J Biol Chem 1998;273:6009–6012.PubMedCrossRefGoogle Scholar
  30. 30.
    Molinari M, Helenius A: Glycoproteins from mixed disulphides with oxidoreductases during folding in living cells. Nature 1999;402:90–93.PubMedCrossRefGoogle Scholar
  31. 31.
    Farmery MR, Allen S, Allen AJ, Bulleid NJ: The role of ERp57 in disulfide bond formation during the assembly of major histocompatibility complex class I in a synchronized semipermeabilized cell translation system. J Biol Chem 2000;275:14933–14938.PubMedCrossRefGoogle Scholar
  32. 32.
    Hughes EA, Cresswell P: The thiol oxidoreductase ERp57 is a component of the MHC class I peptide-loading complex. Curr Biol 1998;8:709–712.PubMedCrossRefGoogle Scholar
  33. 33.
    Lindquist JA, Hammerling GJ, Trowsdale J: ER60/ERp57 forms disulfide-bonded intermediates with MHC class I heavy chain. FASEB J 2001;15:1448–1450.PubMedGoogle Scholar
  34. 34.
    Lindquist JA, Jensen ON, Mann M, Hammerling GJ: ER-60, a chaperone with thiol-dependent reductase activity involved in MHC class I assembly. EMBO J 1998;17:2186–2195.PubMedCrossRefGoogle Scholar
  35. 35.
    Morrice NA, Powis SJ: A role for the thiol-dependent reductase ERp57 in the assembly of MHC class I molecules. Curr Biol 1998;8:713–716.PubMedCrossRefGoogle Scholar
  36. 36.
    Dick TP, Bangia N, Peaper DR, Cresswell P: Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. Immunity 2002;16:87–98.PubMedCrossRefGoogle Scholar
  37. 37.
    Peaper DR, Wearsch PA, Cresswell P: Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex. EMBO J 2005;24:3613–3623.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang Y, Baig E, Williams DB: Functions of ERp57 in the folding and assembly of MHC class I molecules. J Biol Chem 2006;281:14622–14631.PubMedCrossRefGoogle Scholar
  39. 39.
    Garbi N, Tanaka S, Momburg F, Hammerling GJ: Impaired assembly of the major histocompatibility complex class I peptide-loading complex in mice deficient in the oxidoreductase ERp57. Nat Immunol 2006;7:93–102.PubMedCrossRefGoogle Scholar
  40. 40.
    Suh WK, Cohen-Doyle MF, Fruh K, Wang K, Peterson PA, Williams DB: Interaction of MHC class I molecules with the transporter associated with antigen processing. Science 1994;264:1322–1326.PubMedCrossRefGoogle Scholar
  41. 41.
    Ortmann B, Androlewicz MJ, Cresswell P: MHC class I/beta 2-microglobulin complexes associate with TAP transporters before peptide binding. Nature 1994;368:864–867.PubMedCrossRefGoogle Scholar
  42. 42.
    Grandea AG, 3rd, Androlewicz MJ, Athwal RS, Geraghty DE, Spies T: Dependence of peptide binding by MHC class I molecules on their interaction with TAP. Science 1995;270:105–108.PubMedCrossRefGoogle Scholar
  43. 43.
    Momburg F, Tan P: Tapasin-the keystone of the loading complex optimizing peptide binding by MHC class I molecules in the endoplasmic reticulum. Mol Immunol 2002;39:217–233.PubMedCrossRefGoogle Scholar
  44. 44.
    Wright CA, Kozik P, Zacharias M, Springer S: Tapasin and other chaperones: models of the MHC class I loading complex. Biol Chem 2004;385:763–778.PubMedCrossRefGoogle Scholar
  45. 45.
    Garbi N, Tan P, Diehl AD, Chambers BJ, Ljunggren HG, Momburg F, Hammerling GJ: Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nat Immunol 2000;1:234–238.PubMedCrossRefGoogle Scholar
  46. 46.
    Grandea AG, 3rd, Golovina TN, Hamilton SE, Sriram V, Spies T, Brutkiewicz RR, Harty JT, Eisenlohr LC, Van Kaer L: Impaired assembly yet normal trafficking of MHC class I molecules in Tapasin mutant mice. Immunity 2000;13:213–222.PubMedCrossRefGoogle Scholar
  47. 47.
    Barber LD, Howarth M, Bowness P, Elliott T: The quantity of naturally processed peptides stably bound by HLA-A*0201 is significantly reduced in the absence of tapasin. Tissue Antigens 2001;58:363–368.PubMedCrossRefGoogle Scholar
  48. 48.
    Barnden MJ, Purcell AW, Gorman JJ, McCluskey J: Tapasin-mediated retention and optimization of peptide ligands during the assembly of class I molecules. J Immunol 2000;165:322–330.PubMedGoogle Scholar
  49. 49.
    Purcell AW, Kelly AJ, Peh CA, Dudek NL, McCluskey J: Endogenous and exogenous factors contributing to the surface expression of HLA B27 on mutant APC. Hum Immunol 2000;61:120–130.PubMedCrossRefGoogle Scholar
  50. 50.
    Paquet ME, Williams DB: Mutant MHC class I molecules define interactions between components of the peptide-loading complex. Int Immunol 2002;14:347–358.PubMedCrossRefGoogle Scholar
  51. 51.
    Suh WK, Derby MA, Cohen-Doyle MF, et al.: Interaction of murine MHC class I molecules with tapasin and TAP enhances peptide loading and involves the heavy chain alpha3 domain. J Immunol 1999;162:1530–1540.PubMedGoogle Scholar
  52. 52.
    Yu YY, Turnquist HR, Myers NB, Balendiran GK, Hansen TH, Solheim JC: An extensive region of an MHC class I alpha 2 domain loop influences interaction with the assembly complex. J Immunol 1999;163:4427–4433.PubMedGoogle Scholar
  53. 53.
    Beissbarth T, Sun J, Kavathas PB, Ortmann B: Increased efficiency of folding and peptide loading of mutant MHC class I molecules. Eur J Immunol 2000;30:1203–1213.PubMedCrossRefGoogle Scholar
  54. 54.
    Lehner PJ, Surman MJ, Cresswell P: Soluble tapasin restores MHC class I expression and function in the tapasin-negative cell line. 220. Immunity 1998;8:221–231.PubMedCrossRefGoogle Scholar
  55. 55.
    Tan P, Kropshofer H, Mandelboim O, Bulbuc N, Hammerling GJ, Momburg F: Recruitment of MHC class I molecules by tapasin into the transporter associated with antigen processing-associated complex is essential for optimal peptide loading. J Immunol 2002;168:1950–1960.PubMedGoogle Scholar
  56. 56.
    Zarling AL, Luckey CJ, Marto JA et al: Tapasin is a facilitator, not an editor, of class I MHC peptide binding. J Immunol 2003;171:5287–5295.PubMedGoogle Scholar
  57. 57.
    Howarth M, Williams A, Tolstrup AB, Elliott T: Tapasin enhances MHC class I peptide presentation according to peptide half-life. Proc Natl Acad Sci USA 2004; 101:11737–11742.PubMedCrossRefGoogle Scholar
  58. 58.
    Marguet D, Spiliotis ET, Pentcheva T, Lebowitz M, Schneck J, Edidin M: Lateral diffusion of GFP-tagged H2Ld molecules and of GFP-TAP1 reports on the assembly and retention of these molecules in the endoplasmic reticulum. Immunity 1999;11:231–240.PubMedCrossRefGoogle Scholar
  59. 59.
    Pentcheva T, Edidin M: Clustering of peptide-loaded MHC class I molecules for endoplasmic reticulum export imaged by fluorescence resonance energy transfer. J Immunol 2001;166:6625–6632.PubMedGoogle Scholar
  60. 60.
    Spiliotis ET, Manley H, Osorio M, Zuniga MC, Edidin M: Selective export of MHC class I molecules from the ER after their dissociation from TAP. Immunity 2000;13:841–851.PubMedCrossRefGoogle Scholar
  61. 61.
    Kim KM, Adachi T, Nielsen PJ, et al.: Two new proteins preferentially associated with membrane immunoglobulin D. EMBO J 1994;13:3793–3800.PubMedGoogle Scholar
  62. 62.
    Ng FW, Nguyen M, Kwan T, et al: p28 Bap31, a Bcl2/Bcl-XL-and procaspase-8-associated protein in the endoplasmic reticulum. J Cell Biol 1997;139:327–338.PubMedCrossRefGoogle Scholar
  63. 63.
    Annaert WG, Becker B, Kistner U, Reth M, Jahn R: Export of cellubrevin from the endoplasmic reticulum is controlled by BAP31. J Cell Biol 1997;139:1397–1410.PubMedCrossRefGoogle Scholar
  64. 64.
    Maatta J, Hallikas O, Welti S, Hilden P, Schroder J, Kuismanen E: Limited caspase cleavage of human BAP31. FEBS Lett 2000;484:202–206.PubMedCrossRefGoogle Scholar
  65. 65.
    Schamel WW, Kuppig S, Becker B, Gimborn K, Hauri HP, Reth M: A high-molecular-weight complex of membrane proteins BAP29/BAP31 is involved in the retention of membrane-bound IgD in the endoplasmic reticulum. Proc Natl Acad Sci USA 2003;100:9861–9866.PubMedCrossRefGoogle Scholar
  66. 66.
    Lambert G, Becker B, Schreiber R, Boucherot A, Reth M, Kunzelmann K: Control of cystic fibrosis transmembrane conductance regulator expression by BAP31. J Biol Chem 2001;276:20340–20345.PubMedCrossRefGoogle Scholar
  67. 67.
    Paquet ME, Cohen-Doyle M, Shore GC, Williams DB: Bap29/31 influences the intracellular traffic of MHC class I molecules. J Immunol 2004;172:7548–7555.PubMedGoogle Scholar
  68. 68.
    Kemmink J, Darby NJ, Dijkstra K, Nilges M, Creighton TE: Structure determination of the N-terminal thioredoxin-like domain of protein disulfide isomerase using multidimensional heteronuclear 13C/15N NMR spectroscopy. Biochemistry 1996;35:7684–7691.PubMedCrossRefGoogle Scholar
  69. 69.
    Williams DB: Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J Cell Sci 2006;119(pt 4):615–623.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  1. 1.Department of and ImmunologyUniversity of TorontoTorontoCanada
  2. 2.Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations