Immunologic Research

, Volume 34, Issue 3, pp 193–209

Toll-like receptors and atherosclerosis

Key contributors in disease and health?
  • Adam E. Mullick
  • Peter S. Tobias
  • Linda K. Curtiss
Article

Abstract

The identification of Toll-like receptors (TLRs) as key patten-recognition receptors of innate immunity has opened inquiries into previously unknown disease mechanisms. The ability of TLRs to detect a spectrum of pathogen-derived molecules defines their importance in innate immunity and provides a mechanistic link between infection and disease. Atherosclerosis is a chronic inflammatory disease where immune and metabolic factors interact to initiate and propagate arterial lesions. An understanding of TLRs in atherosclerosis could clarify the etiology of this complex process. Furthermore, the existence of host-derived endogenous TLR ligands may implicate TLR involvement in disease mechanisms beyond innate immunity, such as a role in homeostatic mechanisms to resolve injury. Our current knowledge of TLRs in atherosclerosis is discussed in this review with emphasis on experimental studies in atherosclerosis-susceptible mouse models. Highlights from studies of TLR involvement in other disease processes have demonstrated that TLR-dependent mechanisms probably parallel those found in atherosclerosis, some of which could be important in mitigating atherosclerotic injury. Finally, an appreciation of the pro- and anti-atherosclerotic mechanisms of TLR activation over the entire lifetime of an organism will provide clues to the role of TLRs in both health and disease.

Key Words

Toll-like receptors Innate immunity Mice Inflammation Atherosclerosis Antagonistic pleiotropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson KV, Bokla L, Nusslein-Volhard C: Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 1985;42:791–798.PubMedCrossRefGoogle Scholar
  2. 2.
    Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA: The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996;86:973–983.PubMedCrossRefGoogle Scholar
  3. 3.
    Poltorak A, He X, Smirnova I, et al: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998;282:2085–2088.PubMedCrossRefGoogle Scholar
  4. 4.
    Takeda K, Akira S: Toll-like receptors in innate immunity. Int Immunol 2005;17:1–14.PubMedCrossRefGoogle Scholar
  5. 5.
    Ross R: Atherosclerosis—an inflammatory disease. N Engl J Med 1999;340:115–126.PubMedCrossRefGoogle Scholar
  6. 6.
    Steinberg D: Atherogenesis in perspective: hypercho-lesterolemia and inflammation as partners in crime. Nat Med 2002;8:1211–1217.PubMedCrossRefGoogle Scholar
  7. 7.
    Hansson GK, Robertson A-KL, Soderberg-Naucler C: Inflammation and atherosclerosis. Annual Review of Pathology: Mechanisms of Disease (2006) 2006;1:297–329.CrossRefGoogle Scholar
  8. 8.
    Vander Laan PA, Reardon CA, Getz GS: Site specificity of atherosclerosis: site-selective responses to athero-sclerotic modulators. Arterioscler Thromb Vasc Biol 2004;24:12–22.CrossRefGoogle Scholar
  9. 9.
    Grayston JT: Background and current knowledge of Chlamydia pneumoniae and atherosclerosis. J Infect Dis 2000;181 (Suppl 3):S402–410.CrossRefGoogle Scholar
  10. 10.
    O'Connor CM, Dunne MW, Pfeffer MA, et al: Azithromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial. JAMA 2003;290:1459–1466.PubMedCrossRefGoogle Scholar
  11. 11.
    Cercek B, Shah PK, Noc M, et al: Effect of short-term treatment with azithromycin on recurrent ischaemic events in patients with acute coronary syndrome in the Azithromycin in Acute Coronary Syndrome (AZACS) trial: a randomised controlled trial. Lancet 2003;361:809–813.PubMedCrossRefGoogle Scholar
  12. 12.
    Hu H, Pierce GN, Zhong G: The atherogenic effects of chlamydia are dependent on serum cholesterol and specific to Chlamydia pneumoniae. J Clin Invest 1999;103:747–753.PubMedGoogle Scholar
  13. 13.
    Aalto-Setala K, Laitinen K, Erkkila L, et al: Chlamydia pneumoniae does not increase atherosclerosis in the aortic root of apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2001;21:578–584.PubMedGoogle Scholar
  14. 14.
    Caligiuri G, Rottenberg M, Nicoletti A, Wigzell H, Hansson GK: Chlamydia pneumoniae infection does not induce or modify atherosclerosis in mice. Circulation 2001;103:2834–2838.PubMedGoogle Scholar
  15. 15.
    Lusis AJ, Mar R, Pajukanta P: Genetics of atherosclerosis. Annu Rev Genomics Hum Genet 2004;5:189–218.PubMedCrossRefGoogle Scholar
  16. 16.
    Wiedermann CJ, Kiechl S, Schratzberger P, Dunzendorfer S, Weiss G, Willeit J: The role of immune activation in endotoxin-induced atherogenesis. J Endotoxin Res 2001;7:322–326.PubMedCrossRefGoogle Scholar
  17. 17.
    Spence JD, Norris J: Infection, inflammation, and atherosclerosis. Stroke 2003;34:333–334.PubMedCrossRefGoogle Scholar
  18. 18.
    Beutler B: Inferences questions and possibilities in Toll-like receptor signalling. Nature 2004;430:257–263.PubMedCrossRefGoogle Scholar
  19. 19.
    Xu XH, Shah PK, Faure E, et al: Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 2001;104:3103–3108.PubMedGoogle Scholar
  20. 20.
    Vink A, Schoneveld AH, van der Meer JJ, et al: In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions. Circulation 2002;106:1985–1990.PubMedCrossRefGoogle Scholar
  21. 21.
    Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ: Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 2002;105:1158–1161.PubMedGoogle Scholar
  22. 22.
    Schroder NW, Schumann RR: Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis 2005:5:156–164.PubMedGoogle Scholar
  23. 23.
    Arbour NC, Lorenz E, Schutte BC, et al: TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 2000;25:187–191.PubMedCrossRefGoogle Scholar
  24. 24.
    Cook DN, Pisetsky DS, Schwartz DA: Toll-like receptors in the pathogenesis of human disease. Nat Immunol 2004;5:975–979.PubMedCrossRefGoogle Scholar
  25. 25.
    Kiechl S, Lorenz E, Reindl M, et al: Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 2002;347:185–192.PubMedCrossRefGoogle Scholar
  26. 26.
    Ameziane N, Beillat T, Verpillat P, et al: Association of the Toll-like receptor 4 gene Asp299Gly polymorphism with acute coronary events. Arterioscler Thromb Vasc Biol 2003;23:e61–64.PubMedCrossRefGoogle Scholar
  27. 27.
    Boekholdt SM, Agema WR, Peters RJ, et al: Variants of toll-like receptor 4 modify the efficacy of statin therapy and the risk of cardiovascular events. Circulation 2003;107:2416–2421.PubMedCrossRefGoogle Scholar
  28. 28.
    Netea MG, Hijmans A, van Wissen S, et al: Toll-like receptor-4 Asp299Gly polymorphism does not influence progression of atherosclerosis in patients with familial hypercholesterolaemia. Eur J Clin Invest 2004;34:94–99.PubMedCrossRefGoogle Scholar
  29. 29.
    Yang IA, Holloway JW, Ye S: TLR4 Asp299Gly polymorphism is not associated with coronary artery stenosis. Atherosclerosis 2003;170:187–190.PubMedCrossRefGoogle Scholar
  30. 30.
    Edfeldt K, Bennet AM, Eriksson P, et al: Association of hypo-responsive toll-like receptor 4 variants with risk of myocardial infarction. Eur Heart J 2004;25:1447–1453.PubMedCrossRefGoogle Scholar
  31. 31.
    Lorenz E, Mira JP, Cornish KL, Arbour NC, Schwartz DA: A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 2000;68:6398–6401.PubMedCrossRefGoogle Scholar
  32. 32.
    Hamann L, Gomma A, Schroder NW, et al: A frequent toll-like receptor (TLR)-2 polymorphism is a risk factor for coronary restenosis. J Mol Med 2005;83:478–485.PubMedCrossRefGoogle Scholar
  33. 33.
    Sultzer BM: Genetic control of leucocyte responses to endotoxin. Nature 1968;219:1253–1254.PubMedCrossRefGoogle Scholar
  34. 34.
    Watson J, Riblet R, Taylor BA: The response of recombinant inbred strains of mice to bacterial lipopolysaccharides. J Immunol 1977;118:2088–2093.PubMedGoogle Scholar
  35. 35.
    Paigen B, Albee D, Holmes PA, Mitchell D: Genetic analysis of murine strains C57BL/6J and C3H/HeJ to confirm the map position of Ath-1, a gene determining atherosclerosis susceptibility. Biochem Genet 1987:25: 501–511.PubMedCrossRefGoogle Scholar
  36. 36.
    Paigen B, Mitchell D, Reue K, Morrow A, Lusis AJ, LeBoeuf RC: Ath-1, a gene determining atherosclerosis susceptibility and high density lipoprotein levels in mice. Proc Natl Acad Sci USA 1987;84:3763–3767.PubMedCrossRefGoogle Scholar
  37. 37.
    Shi W, Wang NJ, Shih DM, Sun VZ, Wang X, Lusis AJ: Determinants of atherosclerosis susceptibility in the C3H and C57BL/6 mouse model: evidence for involvement of endothelial cells but not blood cells or cholesterol metabolism. Circ Res 2000;86:1078–1084.PubMedGoogle Scholar
  38. 38.
    Wright SD, Burton C, Hernandez M, et al: Infectious agents are not necessary for murine atherogenesis. J Exp Med 2000;191:1437–1442.PubMedCrossRefGoogle Scholar
  39. 39.
    Kerttula Y, Vaara M, Pyhala L, Sariola H, Kostiainen E, Huttunen JK: Effect of bacterial lipopolysaccharide on serum lipids and on the development of aortic atherosclerosis in rabbits. Atherosclerosis 1986;59:307–312.PubMedCrossRefGoogle Scholar
  40. 40.
    Pesonen E, Kaprio E, Rapola J, et al: Effect of repeated endotoxin treatment and hypercholesterolemia on preatherosclerotic lesions in weaned pigs. Part 1. Scanning and transmission electron microscopic study. Atherosclerosis 1987;65:89–98.PubMedCrossRefGoogle Scholar
  41. 41.
    Adachi O, Kawai T, Takeda K, et al: Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998;9:143–150.PubMedCrossRefGoogle Scholar
  42. 42.
    Bjorkbacka H, Kunjathoor VV, Moore KJ, et al: Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med 2004;10:416–421.PubMedCrossRefGoogle Scholar
  43. 43.
    Tobias PS, Soldau K, Ulevitch RJ: Identification of a lipid A binding site in the acute phase reactant lipopolysaccharide binding protein. J Biol Chem 1989;264:10867–10871.PubMedGoogle Scholar
  44. 44.
    Michelsen KS, Wong MH, Shah PK, et al: Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci USA 2004;101:10679–10684.PubMedCrossRefGoogle Scholar
  45. 45.
    Elhage R, Jawien J, Rudling M, et al: Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res 2003;59:234–240.PubMedCrossRefGoogle Scholar
  46. 46.
    Kirii H, Niwa T, Yamada Y, et al: Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 2003;23:656–660.PubMedCrossRefGoogle Scholar
  47. 47.
    Mullick AE, Tobias PS, Curtiss LK: Modulation of atherosclerosis in mice by Toll-like receptor 2. J Clin Invest 2005;115:3149–3156.PubMedCrossRefGoogle Scholar
  48. 48.
    Okamura Y, Watari M, Jerud ES, et al: The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 2001;276:10229–10233.PubMedCrossRefGoogle Scholar
  49. 49.
    Tan MH, Sun Z, Opitz SL, Schmidt TE, Peters JH, George EL, Deletion of the alternatively spliced fibronectin EIIIA domain in mice reduces atherosclerosis. Blood 2004;104:11–18.PubMedCrossRefGoogle Scholar
  50. 50.
    Glukhova MA, Frid MG, Shekhonin BV, et al: Expression of extra domain A fibronectin sequence in vascular smooth muscle cells is phenotype dependent. J Cell Biol 1989;109:357–366.PubMedCrossRefGoogle Scholar
  51. 51.
    Jiang D, Liang J, Fan J, et al: Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 2005;11:1173–1179.PubMedCrossRefGoogle Scholar
  52. 52.
    Levesque H, Girard N, Maingonnat C, et al: Localization and solubilization of hyaluronan and of the hyaluronanbinding protein hyaluronectin in human normal and arteriosclerotic arterial walls. Atherosclerosis 1994;105:51–62.PubMedCrossRefGoogle Scholar
  53. 53.
    Chai S, Chai Q, Danielsen CC, et al: Overexpression of hyaluronan in the tunica media promotes the development of atherosclerosis. Circ Res 2005;96:583–591.PubMedCrossRefGoogle Scholar
  54. 54.
    Schaefer L, Babelova A, Kiss E, et al: The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest 2005;115:2223–2233.PubMedCrossRefGoogle Scholar
  55. 55.
    Riessen R, Isner JM, Blessing E, Loushin C, Nikol S, Wight TN: Regional differences in the distribution of the proteoglycans biglycan and decorin in the extracellular matrix of atherosclerotic and restenotic human coronary arteries. Am J Pathol 1994;144:962–974.PubMedGoogle Scholar
  56. 56.
    Park JS, Svetkauskaite D, He Q, et al: Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 2004;279:7370–7377.PubMedCrossRefGoogle Scholar
  57. 57.
    Kalinina N, Agrotis A, Antropova Y, et al: Increased expression of the DNA-binding cytokine HMGB1 in human atherosclerotic lesions: role of activated macrophages and cytokines. Arterioscler Thromb Vasc Biol 2004;24:2320–2325.PubMedCrossRefGoogle Scholar
  58. 58.
    Berliner JA, Watson AD: A role for oxidized phospholipids in atherosclerosis. N Engl J Med 2005;353:9–11.PubMedCrossRefGoogle Scholar
  59. 59.
    Miller YI: Toll-like receptors and atherosclerosis: oxidized LDL as an endogenous Toll-like receptor ligand. Future Cardiology 2005;1:785–792.CrossRefGoogle Scholar
  60. 60.
    Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R: Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004;118:229–241.PubMedCrossRefGoogle Scholar
  61. 61.
    Leemans JC, Stokman G, Claessen N, et al: Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest 2005;115:2894–2903.PubMedCrossRefGoogle Scholar
  62. 62.
    Lehr HA, Sagban TA, Ihling C, et al: Immunopathogenesis of atherosclerosis: endotoxin accelerates atherosclerosis in rabbits on hypercholesterolemic diet. Circulation 2001;104:914–920.PubMedGoogle Scholar
  63. 63.
    Ostos MA, Recalde D, Zakin MM, Scott-Algara D: Implication of natural killer T cells in atherosclerosis development during a LPS-induced chronic inflammation. FEBS Lett 2002;519:23–29.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhou X, Paulsson G, Stemme S, Hansson GK: Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin Invest 1998;101:1717–1725.PubMedCrossRefGoogle Scholar
  65. 65.
    Redecke V, Hacker H, Datta SK, et al: Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J Immunol 2004;172:2739–2743.PubMedGoogle Scholar
  66. 66.
    Buono C, Binder CJ, Stavrakis G, Witztum JL, Glimcher LH, Lichtman AH: T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci USA 2005;102:1596–1601.PubMedCrossRefGoogle Scholar
  67. 67.
    Binder CJ, Hartvigsen K, Chang MK, et al: IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest 2004;114:427–437.PubMedCrossRefGoogle Scholar
  68. 68.
    Binder CJ, Shaw PX, Chang MK, et al: The role of natural antibodies in atherogenesis. J Lipid Res 2005;46: 1353–1363.PubMedCrossRefGoogle Scholar
  69. 69.
    Hollestelle SC, De Vries MR, Van Keulen JK, et al: Toll-like receptor 4 is involved in outward arterial remodeling. Circulation 2004;109:393–398.PubMedCrossRefGoogle Scholar
  70. 70.
    Schoneveld AH, Oude Nijhuis MM, van Middelaar B, Laman JD, de Kleijn DP, Pasterkamp G: Toll-like receptor 2 stimulation induces intimal hyperplasia and atherosclerotic lesion development. Cardiovasc Res 2005; 66:162–169.PubMedCrossRefGoogle Scholar
  71. 71.
    Pasterkamp G, Smits PC: Imaging of atherosclerosis. Remodelling of coronary arteries. J Cardiovasc Risk 2002;9:229–235.PubMedCrossRefGoogle Scholar
  72. 72.
    Andonegui G, Bonder CS, Green F, et al: Endotheliumderived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J Clin Invest 2003;111:1011–1020.PubMedCrossRefGoogle Scholar
  73. 73.
    Dunzendorfer S, Lee HK, Tobias PS: Flow-dependent regulation of endothelial Toll-like receptor 2 expression through inhibition of SP1 activity. Circ Res 2004;95: 684–691.PubMedCrossRefGoogle Scholar
  74. 74.
    Lawrence T, Willoughby DA, Gilroy DW: Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol 2002;2:787–795.PubMedCrossRefGoogle Scholar
  75. 75.
    de Winther MP, Kanters E, Kraal G, Hofker MH: Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 2005;25:904–914.PubMedCrossRefGoogle Scholar
  76. 76.
    Gavrilov LA, Gavrilova NS: Evolutionary theories of aging and longevity. Scientific World Journal 2002;2: 339–356.PubMedGoogle Scholar
  77. 77.
    Williams GC: Pleiotropy, natural selection, and the evolution of senescence. Evolution 1957;11:398–411.CrossRefGoogle Scholar
  78. 78.
    Rose MR: Evolutionary Biology of Aging. New York, Oxford University Press, 1991.Google Scholar
  79. 79.
    Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J: Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 2001;98: 12072–12077.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Adam E. Mullick
    • 1
  • Peter S. Tobias
    • 1
  • Linda K. Curtiss
    • 1
  1. 1.Department of Immunology, IMM-17The Scripps Research InstituteLa Jolla

Personalised recommendations