Immunologic Research

, Volume 32, Issue 1–3, pp 317–325

Natural killer cell immune responses

Article

Abstract

Natural killer (NK) cells play a vital role in innate immune responses to infection; they express activation receptors that recognize virus-infected cells. Highly related to receptors recognizing tumor cells, the activation receptors trigger cytotoxicity and cytokine production. NK cells also express inhibitory receptors for major histocompatibility complex (MHC) class I molecules that block the action of the activation receptors. Although many ligands for NK cell receptors have MHC class I folds, recent studies also indicate ligands resembling the NK cell receptors themselves. A combination of immunologic, genetic, biophysical, and in vivo approaches is being employed to understand fully how these receptors contribute to NK cell activities in innate immunity to pathogens and tumors.

Key Words

Natural killer cells Innate immunity Viral infection Receptors Ligands 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yokoyama WM: Natural killer cells; in Paul WE (ed): Fundamental Immunology. New York, Lippincott-Raven, 1999, pp 575–603.Google Scholar
  2. 2.
    Kärre K, Ljunggren HG, Piontek G, Kiessling R: Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 1986;319:675–678.PubMedCrossRefGoogle Scholar
  3. 3.
    Ljunggren HG, Karre K: In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 1990;11:237–244.PubMedCrossRefGoogle Scholar
  4. 4.
    Karlhofer FM, Ribaudo RK, Yokoyama WM: MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 1992;358:66–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Colonna M: Specificity and function of immunoglobulin superfamily NK cell inhibitory and stimulatory receptors. Immunol Rev 1997;155:127–133.PubMedCrossRefGoogle Scholar
  6. 6.
    Long EO, Burshtyn DN, Clark WP, et al: Killer cell inhibitory receptors—diversity, specificity, and function. Immunol Rev 1997;155:135–144.PubMedCrossRefGoogle Scholar
  7. 7.
    Lanier LL: NK cell receptors. Annu Rev Immunol 1998;16:359–393.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang LL, Mehta IK, Leblanc PA, Yokoyama WM: Cutting edge: mouse natural killer cells express GP49b1, a structural homologue of human killer inhibitory receptors. J Immunol 1997;158:13–17.PubMedGoogle Scholar
  9. 9.
    Wang LL, Blasioli J, Plas DR, Thomas ML, Yokoyama WM: Specificity of the SH2 domains of SHP-1 in the interaction with the immunoreceptor tyrosine-based inhibitory motif-bearing receptor gp49B. J Immunol 1999;162:1318–1323.PubMedGoogle Scholar
  10. 10.
    Wang LL, Chu DT, Dokun AO, Yokoyama WM: Inducible expression of the gp49B inhibitory receptor on NK cells. J Immunol 2000;164:5215–5220.PubMedGoogle Scholar
  11. 11.
    Yokoyama WM, Seaman WE: The Ly-49 and NKR-P1 gene families encoding lectin-like receptors on natural killer cells: the NK gene complex. Annu Rev Immunol 1993;11:613–635.PubMedGoogle Scholar
  12. 12.
    Braud VM, Allen DSJ, O’Callaghan CA, et al: HLA-E binds to natural-killer-cell receptors CD94/NKG2A, B and C. Nature 1998;391:795–799.PubMedCrossRefGoogle Scholar
  13. 13.
    Vance RE, Kraft JR, Altman JD, Jensen PE, Raulet DH: Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J Exp Med 1998;188:1841–1848.PubMedCrossRefGoogle Scholar
  14. 14.
    Long EO: Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 1999;17:875–904.PubMedCrossRefGoogle Scholar
  15. 15.
    Yokoyama WM: Natural killer cell receptors. Curr Opin Immunol 1998;10:298–305.PubMedCrossRefGoogle Scholar
  16. 16.
    Smith HRC, Karlhofer FM, Yokoyama WM: Ly-49 multigene family expressed by IL-2-activated NK cells. J Immunol 1994;153:1068–1079.PubMedGoogle Scholar
  17. 17.
    Olcese L, Cambiaggi A, Semenzato G, Bottino C, Moretta A, Vivier E: Human killer cell activatory receptors for MHC class I molecules are included in a multimeric complex expressed by natural killer cells. J Immunol 1997;158:5083–5086.PubMedGoogle Scholar
  18. 18.
    Lanier LL: On guard—activating NK cell receptors. Nat Immunol 2001;2:23–27.PubMedCrossRefGoogle Scholar
  19. 19.
    Lanier LL: Natural killer cells: from no receptors to too many. Immunity 1997;6:371–378.PubMedCrossRefGoogle Scholar
  20. 20.
    Yokoyama WM, Kehn PJ, Cohen DI, Shevach EM: Chromosomal location of the Ly-49 (A1, YE1/48) multigene family: genetic association with the NK 1.1 antigen. J Immunol 1990;145:2353–2358.PubMedGoogle Scholar
  21. 21.
    Yokoyama WM, Ryan JC, Hunter JJ, Smith HR, Stark M, Seaman WE: cDNA cloning of mouse NKR-P1 and genetic linkage with Ly-49: identification of a natural killer cell gene complex on mouse chromosome 6. J Immunol 1991;147:3229–3236.PubMedGoogle Scholar
  22. 22.
    Yokoyama WM, Plougastel BF: Immune functions encoded by the natural killer gene complex. Nat Rev Immunol 2003;3:304–316.PubMedCrossRefGoogle Scholar
  23. 23.
    Khalturin K, Becker M, Rinkevich B, Bosch TC: Urochordates and the origin of natural killer cells: identification of a CD94/NKR-P1-related receptor in blood cells of Botryllus. Proc Natl Acad Sci USA 2003;100:622–627.PubMedCrossRefGoogle Scholar
  24. 24.
    Sato A, Mayer WE, Overath P, Klein J: Genes encoding putative natural killer cell C-type lectin receptors in teleostean fishes. Proc Natl Acad Sci USA 2003; 100:7779–7784.PubMedCrossRefGoogle Scholar
  25. 25.
    Brownstein DG, Gras L: Differential pathogenesis of lethal mousepox in congenic DBA/2 mice implicates natural killer cell receptor NKR-P1 in necrotizing hepatitis and the fifth component of complement in recruitment of circulating leukocytes to spleen. Am J Pathol 1997;150:1407–1420.PubMedGoogle Scholar
  26. 26.
    Pereira RA, Scalzo A, Simmons A: Cutting edge: a NK complex-linked locus governs acute versus latent herpes simplex virus infection of neurons. J Immunol 2001;166:5869–5873.PubMedGoogle Scholar
  27. 27.
    Yokoyama WM, Daniels BF, Seaman WE, Hunziker R, Margulies DH, Smith HR: A family of murine NK cell receptors specific for target cell MHC class I molecules. Semin Immunol 1995;7:89–101.PubMedCrossRefGoogle Scholar
  28. 28.
    Bull C, Sobanov Y, Rohrdanz B, O’Brien J, Lehrach H, Hofer E: The centromeric part of the human NK gene complex: linkage of LOX-1 and LY49L with the CD94/NKG2 region. Genes Immun 2000;1:280–287.PubMedCrossRefGoogle Scholar
  29. 29.
    Colonna M, Samaridis J: Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science 1995;268:367, 368.CrossRefGoogle Scholar
  30. 30.
    Wagtmann N, Rajagopalan S, Winter CC, Peruzzi M, Long EO: Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer. Immunity 1995;3:801–809.PubMedCrossRefGoogle Scholar
  31. 31.
    Idris AH, Iizuka K, Smith HRC, Scalzo AA, Yokoyama WM: Genetic control of natural killing and in vivo tumor elimination by the Chok locus. J Exp Med 1998; 188:2243–2256.PubMedCrossRefGoogle Scholar
  32. 32.
    Idris AH, Smith HRC, Mason LH, Ortaldo JH, Scalzo AA, Yokoyama WM: The natural killer cell complex genetic locus, Chok, encodes Ly49D, a target recognition receptor that activates natural killing. Proc Natl Acad Sci USA 1999;96:6330–6335.PubMedCrossRefGoogle Scholar
  33. 33.
    Idris AH, Scalzo AA, Yokoyama WM: Close genetic linkage of Chok with the NKC-linked loci Cd94, Ly49, and Cmv1 on mouse chromosome 6. Immunogenetics 1999;49:906–908.PubMedCrossRefGoogle Scholar
  34. 34.
    Mehta IK, Smith HRC, Wang J, Margulies DH, Yokoyama WM: A “chimeric” C57L-derived Ly49 inhibitory receptor resembling the Ly49D activation receptor. Cell Immunol 2000;209:29–41.CrossRefGoogle Scholar
  35. 35.
    Furukawa H, Iizuka K, Poursine-Laurent J, Shastri N, Yokoyama WM: A ligand for the murine NK activation receptor Ly-49D: activation of tolerized NK cells from beta(2)-microglobulin-deficient mice. J Immunol 2002;169:126–136.PubMedGoogle Scholar
  36. 36.
    Matsumoto N, Ribaudo RK, Abastado J-P, Margulies DH, Yokoyama WM: The lectin-like NK cell receptor Ly-49A recognizes a carbohydrate-independent epitope on its MHC class I ligand. Immunity 1998;8:245–254.PubMedCrossRefGoogle Scholar
  37. 37.
    Matsumoto N, Mitsuki M, Tajima K, Yokoyama WM, Yamamoto K: The functional binding site for the C-type lectin-like natural killer cell receptor Ly49A spans three domains of its major histocompatibility complex class I ligand. J Exp Med 2001;193:147–158.PubMedCrossRefGoogle Scholar
  38. 38.
    Matsumoto N, Yokoyama WM, Kojima S, Yamamoto K: The NK cell MHC class I receptor Ly49A detects mutations on H-2D(d) inside and outside of the peptide binding groove. J Immunol 2001;166:4422–4428.PubMedGoogle Scholar
  39. 39.
    Mehta IK, Wang J, Roland J, Margulies DH, Yokoyama WM: Ly49A allelic variation and MHC class I specificity. Immunogenetics 2001;53:572–583.PubMedCrossRefGoogle Scholar
  40. 40.
    Plougastel B, Matsumoto K, Dubbelde C, Yokoyama WM: Analysis of a 1-Mb BAC contig overlapping the mouse Nkrp1 cluster of genes: cloning of three new Nkrp1 members, Nkrp1d, Nkrp1e, and Nkrp1f. Immunogenetics 2001;53:592–598.PubMedCrossRefGoogle Scholar
  41. 41.
    Ryan JC, Turck J, Niemi EC, Yokoyama WM, Seaman WE: Molecular cloning of the NK1.1 antigen, a member of the NKR-P1 family of natural killer cell activation molecules. J Immunol 1992;149:1631–1635.PubMedGoogle Scholar
  42. 42.
    Bendelac A, Rivera MN, Park SH, Roark JH: Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 1997;15:535–562.PubMedCrossRefGoogle Scholar
  43. 43.
    Kronenberg M, Gapin L: The unconventional lifestyle of NKT cells. Nat Rev Immunol 2002;2:557–568.PubMedGoogle Scholar
  44. 44.
    Plougastel B, Dubbelde C, Yokoyama WM: Cloning of Clr, a new family of lectin-like genes localized between mouse Nkrp1a and Cd69 genes. Immunogenetics 2001;53:209–214.PubMedCrossRefGoogle Scholar
  45. 45.
    Iizuka K, Naidenko OV, Plougastel BF, Fremont DH, Yokoyama WM: Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nat Immunol 2003;4:801–807.PubMedCrossRefGoogle Scholar
  46. 46.
    Brown MG, Scalzo AA, Stone LR, et al: Natural killer gene complex (Nkc) allelic variability in inbred mice: evidence for Nkc haplotypes. Immunogenetics 2001;53:584–591.PubMedCrossRefGoogle Scholar
  47. 47.
    Makrigiannis AP, Pau AT, Schwartzberg PL, McVicar DW, Beck TW, Anderson SK: A BAC contig map of the Ly49 gene cluster in 129 mice reveals extensive differences in gene content relative to C57BL/6 mice. Genomics 2002;79:437–444.PubMedCrossRefGoogle Scholar
  48. 48.
    Nasrallah JB: Recognition and rejection of self in plant reproduction. Science 2002;296:305–308.PubMedCrossRefGoogle Scholar
  49. 49.
    Ho EL, Heusel JW, Brown MG, Matsumoto K, Scalzo AA, Yokoyama WM: Murine Nkg2d and Cd94 are clustered within the natural killer complex and are expressed independently in natural killer cells. Proc Natl Acad Sci USA 1998;95:6320–6325.PubMedCrossRefGoogle Scholar
  50. 50.
    Vance RE, Tanamachi DM, Hanke T, Raulet DH: Cloning of a mouse homolog of CD94 extends the family of C-type lectins on murine natural killer cells. Eur J Immunol 1997;27:3236–3241.PubMedCrossRefGoogle Scholar
  51. 51.
    Wu J, Song Y, Bakker AB, et al: An activating immunoreceptor complex formed by NKG2D and DAP10. Science 1999;285:730–732.PubMedCrossRefGoogle Scholar
  52. 52.
    Ho EL, Carayannopoulos LN, Poursine-Laurent J, et al: Co-stimulation of multiple NK cell activation receptors by NK G2D. J Immunol 2002;169:3667–3675.PubMedGoogle Scholar
  53. 53.
    Gilfillan S, Ho EL, Cella M, Yokoyama WM, Colonna M: NK G2D recruits two distinct adapters to trigger natural killer cell activation and costimulation. Nat Immunol 2002;3:1150–1155.PubMedCrossRefGoogle Scholar
  54. 54.
    Diefenbach A, Tomasello E, Lucas M, et al: Selective associations with signaling molecules determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol 2002;3:1142–1149.PubMedCrossRefGoogle Scholar
  55. 55.
    Bauer S, Groh V, Wu J, et al: Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999;285:727–729.PubMedCrossRefGoogle Scholar
  56. 56.
    Cerwenka A, Bakker ABH, McClanahan T, et al: Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 2000;12:721–727.PubMedCrossRefGoogle Scholar
  57. 57.
    Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH: Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 2000;1:119–126.PubMedCrossRefGoogle Scholar
  58. 58.
    Carayannopoulos LN, Naidenko OV, Kinder J, Ho EL, Fremont DH, Yokoyama WM. Ligands for murine NKG2D display heterogeneous binding behavior. Eur J Immunol 2002;32:597–605.PubMedCrossRefGoogle Scholar
  59. 59.
    Carayannopoulos L, Naidenko O, Fremont D, Yokoyama WM: Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J Immunol 2002;169:4079–4083.PubMedGoogle Scholar
  60. 60.
    Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP: Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 1999;17:189–220.PubMedCrossRefGoogle Scholar
  61. 61.
    Biron CA, Byron KS, Sullivan JL: Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 1989;320:1731–1735.PubMedCrossRefGoogle Scholar
  62. 62.
    Bukowski JF, Woda BA, Habu S, Okumura K, Welsh RM: Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J Immunol 1983;131:1531–1538.PubMedGoogle Scholar
  63. 63.
    Scalzo AA, Fitzgerald NA, Simmons A, La Vista AB, Shellam GR. Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J Exp Med 1990;171:1469–1483.PubMedCrossRefGoogle Scholar
  64. 64.
    Brown MG, Dokun AO, Heusel JW, et al: Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 2001;292:934–937.PubMedCrossRefGoogle Scholar
  65. 65.
    Smith HR, Chuang HH, Wang LL, Salcedo M, Heusel JW, Yokoyama WM: Nonstochastic coexpression of activation receptors on murine natural killer cells. J Exp Med 2000;191:1341–1354.PubMedCrossRefGoogle Scholar
  66. 66.
    Smith HR, Heusel JW, Mehta IK, et al: Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA 2002;99:8826–8831.PubMedGoogle Scholar
  67. 67.
    Bubic I, Wagner M, Krmpotic A, et al: Garn of virulence caused by loss of a gene in murine cytomegalovirus. J Virol 2004;78:7536–7544.PubMedCrossRefGoogle Scholar
  68. 68.
    Dokun AO, Kim S, Smith HR, Kang HS, Chu DT, Yokoyama WM: Specific and nonspecific NK cell activation during virus infection. Nat Immunol 2001;2:951–956.PubMedCrossRefGoogle Scholar
  69. 69.
    Dorner BG, Smith HRC, French AR, et al: Coordinate expression of cytokines and chemokines by natural killer cells during murine cytomegalovirus infection. J Immunol 2004;172:3119–3131.PubMedGoogle Scholar
  70. 70.
    Krug A, French AR, Barchet W, et al: TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 2004;21:107–119.PubMedCrossRefGoogle Scholar
  71. 71.
    French AR, Pingel JT, Wagner M, et al: Escape of mutant double-stranded DNA virus from innate immune control. Immunity 2004;20:747–756.PubMedCrossRefGoogle Scholar
  72. 72.
    Fauci AS, Lane HC: Human immunodeficiency virus (HIV) disease: AIDS and related disorders; in Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL, Jameson JL (eds): Harrison’s Principles of Internal Medicine. New York, McGraw-Hill, 2001, pp. 1852–1913.Google Scholar
  73. 73.
    Fishman JA, Rubin RH: Infection in organ-transplant recipients. N Engl J Med 1998;338:1741–1751.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  1. 1.Howard Hughes Medical Institute, Rheumatology Division, Departments of Medicine, and Pathology and ImmunologyWashington University School of MedicineSt. Louis

Personalised recommendations