Immunologic Research

, Volume 31, Issue 2, pp 151–159 | Cite as

The mdr1a−/− mouse model of spontaneous colitis

A relevant and appropriate animal model to study inflammatory bowel disease
  • Jacque N. Wilk
  • Janine Bilsborough
  • Joanne L. Viney


There are many types of colitis models in animals that researchers use to elucidate the mechanism of action of human inflammatory bowel disease (IBD). These models are also used to test novel therapeutics and therapeutic treatment regimens. Here, we will review the characteristics of the mdr1a−/− model of spontaneous colitis that we believe make this model an important part of the IBD researcher's toolbox. We will also share new data that will reinforce the fact that this model is relevant in the study of IBD. Mdrla−/− mice lack the murine multiple drug resistance gene for P-glyco-protein 170 that is normally expressed in multiple tissues including intestinal epithelial cells. These mice spontaneously develop a form of colitis at around 12 wk of age. The fact that the complexity of this model mirrors the complexity of disease in humans, as well as recent literature that links MDR1 polymorphisms in humans to Crohn's Disease and Ulcerative Colitis, makes this an appropriate animal model to study.

Key Words

Mdrla−/− Cytokines Chemokines Bacterial flora Inflammatory bowel disease Colitis Animal model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shanahan F: Crohn's disease. Lancet 2002;359:62–69.PubMedCrossRefGoogle Scholar
  2. 2.
    Flynn C, Levine J, Rosenberg DW: Murine models of ulcerative colitis. Arch Pharm Res 2003;26:433–440.PubMedCrossRefGoogle Scholar
  3. 3.
    Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W: Interleukin-10-deficient mice develop chronic enterocolitis. [see comments]. Cell 1993;75:263–274.PubMedCrossRefGoogle Scholar
  4. 4.
    Watanabe M, Ueno Y, Yamazaki M, Hibi T: Mucosal IL-7-mediated immune responses in chronic colitis-IL-7 transgenic mouse model. Immunol Res 1999;20:251–259.PubMedGoogle Scholar
  5. 5.
    Morrissey PJ, Charrier K: Induction of wasting disease in SCID mice by the transfer of normal CD4+/CD45RBhi T cells and the regulation of this autoreactivity by CD4+/CD45RBlo T cells. Res Immunol 1994;145:357–362.PubMedCrossRefGoogle Scholar
  6. 6.
    Pizarro TT, Arseneau KO, Bamias G, Cominelli F: Mouse models for the study of Crohn's disease. Trends Mol Med 2003;9:218–222.PubMedCrossRefGoogle Scholar
  7. 7.
    Panwala CM, Jones JC, Viney JL: A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdrla, spontaneously develop colitis. J Immunol 1998;161:5733–5744.PubMedGoogle Scholar
  8. 8.
    Leveille-Webster CR, Arias IM: The biology of the P-glycoproteins. J Membr Biol 1995;143:89–102.PubMedGoogle Scholar
  9. 9.
    Chen CJ, Chin JE, Ueda K, et al.: Internal duplication and homology with bacterial transport proteins in the mdrl (P-glycoprotein) gene from multidrug-resistant human cells. Cell 1986;47:381–389.PubMedCrossRefGoogle Scholar
  10. 10.
    Hsu SI, Lothstein L, Horwitz SB: Differential overexpression of three mdr gene family members in multidrugresistant J774.2 mouse cells. Evidence that distinct P-glycoprotein precursors are encoded by unique mdr genes. J Biol Chem 1989;264:12053–12062.PubMedGoogle Scholar
  11. 11.
    Ueda K, Clark DP, Chen CJ, Roninson IB, Gottesman MM, Pastan I: The human multidrug resistance (mdr1) gene. cDNA cloning and transcription initiation. J Biol Chem 1987;262:505–508.PubMedGoogle Scholar
  12. 12.
    Croop JM, Raymond M, Haber D, et al.: The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol Cell Biol 1989;9:1346–1350.PubMedGoogle Scholar
  13. 13.
    Sparreboom A, van Asperen J, Mayer U, et al.: Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA 1997;94:2031–2035.PubMedCrossRefGoogle Scholar
  14. 14.
    Ho GT, Moodie FM, Satsangi J: Multidrug resistance 1 gene (P-glycoprotein 170): an important determinant in gastrointestinal disease? Gut 2003;52:759–766.PubMedCrossRefGoogle Scholar
  15. 15.
    Valverde MA, Diaz M, Sepulveda FV, et al.: Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein. Nature 1992;355:830–833.PubMedCrossRefGoogle Scholar
  16. 16.
    Johnstone RW, Cretney E, Smyth MJ: P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood 1999;93:1075–1085.PubMedGoogle Scholar
  17. 17.
    Johnstone RW, Ruefli AA, Smyth MJ: Multiple physiological functions for multidrug transporter P-glycoprotein? Trends Biochem Sci 2000;25:1–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Mahler M, Bristol IJ, Leiter EH, et al.: Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am J Physiol 1998;274:G544–551.PubMedGoogle Scholar
  19. 19.
    Owen RJ: Helicobacter: species classification and identification. Br Med Bull 1998;54:17–30.PubMedGoogle Scholar
  20. 20.
    Haines DC, Gorelick PL, Battles JK, et al.: Inflammatory large bowel disease in immunodeficient rats naturally and experimentally infected with Helicobacter bilis. Vet Pathol 1998;35:202–208.PubMedCrossRefGoogle Scholar
  21. 21.
    Kullberg MC, Rothfuchs AG, Jankovic D, et al.: Helicobacter hepaticus-induced colitis in interleukin-10-deficient mice: cytokine requirements for the induction and maintenance of intestinal inflammation. Infect Immun 2001;69:4232–4241.PubMedCrossRefGoogle Scholar
  22. 22.
    Shomer NH, Dangler CA, Schrenzel MD, Fox JG: Helicobacter bilis-induced inflammatory bowel disease in scid mice with defined flora. Infect Immun 1997;65:4858–4864.PubMedGoogle Scholar
  23. 23.
    Maggio-Price L, Shows D, Wagge K, et al.: Helicobacter bilis infection accelerates, and Helicobacter hepaticus infection delays the development of colitis in multiple drug resistance (mdrla−/−) deficient mice. Am J Pathol 2002;160(2):739–751.PubMedGoogle Scholar
  24. 24.
    Eisenbraun MD, Miller RA: mdrla-encoded P-glycoprotein is not required for peripheral T cell proliferation, cytokine release, or cytotoxic effector function in mice. J Immunol 1999;163:2621–2627.PubMedGoogle Scholar
  25. 25.
    Eisenbraun MD, Mosley RL, Teitelbaum DH, Miller RA: Altered development of intestinal intraepithelial lymphocytes in P-glycoprotein-deficient mice. Dev Comp Immunol 2000;24:783–795.PubMedCrossRefGoogle Scholar
  26. 26.
    D'Ambrosio D, Panina-Bordignon P, Sinigaglia F: Chemokine receptors in inflammation: an overview. J Immunol Methods 2003;273:3–13.PubMedCrossRefGoogle Scholar
  27. 27.
    Herfarth H, Pollok-Kopp B, Goke M, et al.: Polymorphism of CC chemokine receptors CCR2 and CCR5 in Crohn's disease. Immunol Lett 2001;77:113–117.PubMedCrossRefGoogle Scholar
  28. 28.
    MacDermott RP, Sanderson IR, Reinecker HC: The central role of chemokines (chemotactic cytokines) in the immunopathogenesis of ulcerative colitis and Crohn's disease. Inflammatory Bowel Diseases 1998;4:54–67.PubMedCrossRefGoogle Scholar
  29. 29.
    Papadakis KA, Targan SR: Role of cytokines in the pathogenesis of inflammatory bowel disease. Ann Rev Med 2000;51:289–298.PubMedCrossRefGoogle Scholar
  30. 30.
    Reinecker HC, Steffen M, Witthoeft T, et al.: Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn's disease. Clin Exp Immunol 1993;94:174–181.PubMedCrossRefGoogle Scholar
  31. 31.
    Wedemeyer J, Lorentz A, Goke M, et al.: Enhanced production of monocyte chemotactic protein 3 in inflammatory bowel disease mucosa. [see comments]. Gut 1999;44:629–635.PubMedCrossRefGoogle Scholar
  32. 32.
    McCormack G, Moriarty D, O'Donoghue DP, et al.: Tissue cytokine and chemokine expression in inflammatory bowel disease. Inflamm Res 2001;50:491–495.PubMedCrossRefGoogle Scholar
  33. 33.
    Dwinell MB, Lugering N, Eckmann L, Kagnoff MF: Regulated production of interferon-inducible T-cell chemoattractants by human intestinal epithelial cells. Gastroenterology 2001;120:49–59.PubMedCrossRefGoogle Scholar
  34. 34.
    Yang SK, Eckmann L, Panja A, Kagnoff MF: Differential and regulated expression of C-X-C, C-C, and C-chemokines by human colon epithelial cells. Gastroenterology 1997;113:1214–1223.PubMedCrossRefGoogle Scholar
  35. 35.
    Satsangi J, Parkes M, Louis E, et al.: Two stage genomewide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nature Genet 1996;14:199–202.PubMedCrossRefGoogle Scholar
  36. 36.
    Schwab M, Schaeffeler E, Marx C, et al.: Association between the C3435T MDR1 gene polymorphism and susceptibility for ulcerative colitis. Gastroenterology 2003;124:26–33.PubMedCrossRefGoogle Scholar
  37. 37.
    Yacyshyn B, Maksymowych W, Bowen-Yacyshyn MB: Differences in P-glycoprotein-170 expression and activity between Crohn's disease and ulcerative colitis. Human Immunol 1999;60:677–687.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Jacque N. Wilk
    • 1
  • Janine Bilsborough
    • 1
  • Joanne L. Viney
    • 1
  1. 1.Department of Autoimmunity and Vascular BiologyAmgen IncSeattle

Personalised recommendations