Immunologic Research

, Volume 31, Issue 1, pp 13–24

High-avidity CD8+ T cells

Optimal soldiers in the war against viruses and tumors
  • Martha A. Alexander-Miller
Article

Abstract

The primary goal of vaccination is the establishment of protective immunity. Thus there has been significant effort put toward the identification of attributes of the immune response that are associated with optimal protection. Although the number of virus-specific cells elicited is unquestionably important, recent studies have identified an additional parameter, functional avidity, as critical in determining the efficiency of viral clearance. T-cell avidity is a measure of the sensitivity of a cell to peptide antigen. High-avidity cells are those that can recognize antigen-presenting cells (APC) bearing very low levels of peptide antigen, whereas low-avidity cells require much higher numbers of peptide major histocompatibility complex (MHC) complexes in order to become activated or exert effector function. We are only now beginning to gain insights into the molecular control of avidity and the signals required for the optimal activation, expansion, and retention of high-avidity cells in vivo. This review summarizes the current knowledge regarding CD8+ T-cell avidity and explores some of the important issues that are, as of yet, unresolved.

Key Words

Avidity Viral clearance CD8+ T cells Tumors Regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander-Miller MA, Leggatt GR, Berzofsky JA: Selective expansion of high-or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc Natl Acad Sci USA 1996;93:4102–4107.PubMedCrossRefGoogle Scholar
  2. 2.
    Sedlik C, Dadaglio G, Saron MF, Deriaud E, Rojas M, Casal SI, Leclerc C: In vivo induction of a high-avidity, high-frequency cytotoxic T-lymphocyte response is associated with antiviral protective immunity. J Virol 2000;74:5769–5775.PubMedCrossRefGoogle Scholar
  3. 3.
    Gallimore A, Dumrese T, Hengartner, H, Zinkernagel RM, Rammensee HG: Protective immunity does not correlate with the hierarchy of virus-specific cytotoxic T cell responses to naturally processed peptides. J Exp Med 1998;187:1647–1657.PubMedCrossRefGoogle Scholar
  4. 4.
    Messaoudi I, Guevara Patino JA, Dyall R, LeMaoult J, Nikolich-Zugich J: Direct link between MHC polymorphism, T cell avidity, and diversity in immune defense. Science 2002;298:1797–1800.PubMedCrossRefGoogle Scholar
  5. 5.
    Dutoit V, Rubio-Godoy V, Dietrich PY, Quiqueres AL, Schnuriger V, Rimoldi D, et al.: Heterogeneous T-cell response to MAGE-A 10(254–262): high-avidity-specific cytolytic T lymphocytes show superior antitumor activity. Cancer Res 2001;61:5850–5856.PubMedGoogle Scholar
  6. 6.
    Yee C, Savage PA, Lee PP, Davis MM, Greenberg PD: Isolation of high-avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers. J Immunol 1999;162:2227–2234.PubMedGoogle Scholar
  7. 7.
    Snyder JT, Alexander-Miller MA, Berzofsky JA, Belyakov IM: Molecular mechanisms and biological significance of CTL avidity. Curr HIV Res 2003:1: 287–294.PubMedCrossRefGoogle Scholar
  8. 8.
    Walter S, Herrgen L, Schoor O, Jung G, Wernet D, Buhring HJ, Rammensee HG, Stevanovic S: Cutting edge: predetermined avidity of human CD8 T cells expanded on calibrated MHC/anti-CD28-coated microspheres. J Immunol 2003;171:4974–4978.PubMedGoogle Scholar
  9. 9.
    Cawthon AG, Lu H, Alexander-Miller MA: Peptide requirement for CTL activation reflects the sensitivity to CD3 engagement: correlation with CD8 αβ versus CD8αα expression. J Immunol 2001;167:2577–2584.PubMedGoogle Scholar
  10. 10.
    Derby M, Alexander-Miller M, Tse R, Berzofsky J: High-avidity CTL exploit two complementary mechanisms to provide better protection against viral infection than low-avidity CTL. J Immunol 2001;166:1690–1697.PubMedGoogle Scholar
  11. 11.
    Mealey RH, Zhang B, Leib SR, Littke MH, McGuire TC: Epitope specificity is critical for high and moderate avidity cytotoxic T lymphocytes associated with control of viral load and clinical disease in horses with equine infectious anemia virus. Virology 2003;313:537–552.PubMedCrossRefGoogle Scholar
  12. 12.
    Zeh HJ, III, Perry-Lalley D, Dudley ME, Rosenberg SA, Yang JC. High-avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J Immunol 1999;162:989–994.PubMedGoogle Scholar
  13. 13.
    Busch DH, Pamer EG: T cell affinity maturation by selective expansion during infection. J Exp Med 1999;189:701–710.PubMedCrossRefGoogle Scholar
  14. 14.
    al Ramadi BK, Jelonek MT, Boyd LF, Margulies DH, Bothwell AL: Lack of strict correlation of functional sensitization with the apparent affinity of MHC/peptide complexes for the TCR. J Immunol 1995;155:662–673.Google Scholar
  15. 15.
    Echchakir H, Dorothee G, Vergnon I, Menez J, Chouaib S, Mami-Chouaib F: Cytotoxic T lymphocytes directed against a tumor-specific mutated antigen display similar HLA tetramer binding but distinct functional avidity and tissue distribution. Proc Natl Acad Sci USA 2002; 99:9358–9363.PubMedCrossRefGoogle Scholar
  16. 16.
    Reignat S, Webster GJM, Brown D, Ogg GS, King A, Seneviratne SL, et al.: Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic Hepatitis B virus infection. J Exp Med 2002;195:1089–1101.PubMedCrossRefGoogle Scholar
  17. 17.
    Bullock TNJ, Mullins DW, Colella TA, Engelhard VH: Manipulation of avidity to improve effectiveness of adoptively transferred CD8+ T, cells for melanoma immunotherapy in human MHC class I-transgenic mice. J Immunol 2001;167:5824–5831.PubMedGoogle Scholar
  18. 18.
    Lawson TM, Man S, Wang ECY, Williams S, Amos N, Gillespie GM, et al.: Functional differences between influenza A-specific cytotoxic T lymphocyte clones expressing dominant and subdominant TCR. Int Immunol 2001;13:1383–1390.PubMedCrossRefGoogle Scholar
  19. 19.
    Palermo B, Campanelli R, Mantovani S, Lantelme E, Manganoni AM, Carella G, et al.: Diverse expansion potential and heterogeneous avidity in tumor-associated antigen-specific T lymphocytes from primary melanoma patients. Eur J Immunol 2001;31:412–420.PubMedCrossRefGoogle Scholar
  20. 20.
    Drake DR, III, Braciale TJ: Cutting edge: lipid raft integrity affects the efficiency of MHC class I tetramer binding and cell surface TCR arrangement on CD8+ T cells. J Immunol 2001;166:7009–7013.PubMedGoogle Scholar
  21. 21.
    Fahmy TM, Bieler JG, Edidin M, Schneck JP: Increased TCR avidity after T cell activation: a mechanism for sensing low-density antigen. Immunity 2001;14:135–143.PubMedGoogle Scholar
  22. 22.
    Cawthon AG, Alexander-Miller MA: Optimal colocalization of TCR and CD8 as a novel mechanism for the control of functional avidity. J Immunol 2002;169:3492–3498.PubMedGoogle Scholar
  23. 23.
    Zamoyska R, Basson A, Filby A, Legname G, Lovatt M, Seddon B: The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunol Rev 2003;191:107–118.PubMedCrossRefGoogle Scholar
  24. 24.
    van der Merwe PA, Davis SJ: Molecular interactions mediating T cell antigen recognition. Annu Rev Immunol 2003;21:659–684.PubMedCrossRefGoogle Scholar
  25. 25.
    Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A: T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 1999;283:680–682.PubMedCrossRefGoogle Scholar
  26. 26.
    Wulfing C, Sumen C, Sjaastad MD, Wu LC, Dustin ML, Davis MM: Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat Immunol 2002;3:42–47PubMedCrossRefGoogle Scholar
  27. 27.
    Huang J, Lo PF, Zal T, Gascoigne NR, Smith BA, Levin SD, Grey HM: CD28 plays a critical role in the segregation of PKC theta within the immunologic synapse. Proc Natl Acad Sci USA 2002;99:9369–9373.PubMedCrossRefGoogle Scholar
  28. 28.
    Wetzel SA, McKeithan TW, Parker DC: Live-cell dynamics and the role of costimulation in immunological synapse formation. J Immunol 2002;169:6092–6101.PubMedGoogle Scholar
  29. 29.
    Jung S, Unutmaz D, Wong P, Sano G-I, De los Santos K, Sparwasser T, et al.: In vivo depletion of CD11c dendritic cells abrogates priming of CD8+T cells by exogenous cell-associated antigens. Immunity 2002;17:211–220.PubMedCrossRefGoogle Scholar
  30. 30.
    Gray PM, Parks GD, Alexander-Miller MA: High-avidity CD8+ T cells are the initial population elicited following viral infection of the respiratory tract. J Immunol 2003;170:174–181.PubMedGoogle Scholar
  31. 31.
    Gray PM, Parks GD, Alexander-Miller MA: A novel CD8-independent high-avidity cytotoxic T-lymphocyte response directed against an epitope in the phosphoprotein of the paramyxovirus simian virus 5. J Virol 2001;75:10065–10072.PubMedCrossRefGoogle Scholar
  32. 32.
    Slifka MK, Whitton JL: Functional avidity maturation of CD8+ T cells without selection of higher affinity TCR. Nat Immunol 2001;2:711–717.PubMedCrossRefGoogle Scholar
  33. 33.
    Alexander-Miller MA, Leggatt GR, Sarin A, Berzofsky JA: Role of antigen, CD8, and cytotoxic T lymphocyte (CTL) avidity in high dose antigen induction of apoptosis of effector CTL. J Exp Med 1996;184:485–492.PubMedCrossRefGoogle Scholar
  34. 34.
    Dyall R, Messaoudi I, Janetzki S, Nikolic-Zugic J: MHC polymorphism can enrich the T cell repertoire of the species by shifts in intrathymic selection. J Immunol 2000;164:1695–1698.PubMedGoogle Scholar
  35. 35.
    Wherry EJ, Puorro KA, Porgador A, Eisenlohr LC: The induction of virus-specific CTL as a function of increasing epitope expression: responses rise steadily until excessively high levels of epitope are attained. J Immunol 1999;163:3735–3745.PubMedGoogle Scholar
  36. 36.
    Wherry EJ, McElhaugh MJ, Eisenlohr LC: Generation of CD8+ T cell memory in response to low, high, and excessive levels of epitope. J Immunol 2002;168:4455–4461.PubMedGoogle Scholar
  37. 37.
    Bullock TNJ, Mullins DW, Engelhard VH: Antigen density presented by dendritic cells in vivo differentially affects the number and avidity of primary, memory, and recall CD8+ T cells. J Immunol 2003;170:1822–1829.PubMedGoogle Scholar
  38. 38.
    Rees W, Bender J, Teague TK, Kedl RM, Crawford F, Marrack P, Kappler J: An inverse relationship between T cell receptor affinity and antigen dose during CD4+ T cell responses in vivo and in vitro. Proc Natl Acad Sci USA 1999;96:9781–9786.PubMedCrossRefGoogle Scholar
  39. 39.
    Oh S, Hodge JW, Ahlers JD, Burke DS, Schlom J, Berzofsky JA: Selective induction of high-avidity CTL by altering the balance of signals from APC. J Immunol 2003;170:2523–2530.PubMedGoogle Scholar
  40. 40.
    Moskophidis D, Lechner F, Pircher H, Zinkernagel RM: Virus persistence in acutely infected immuno competent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 1993;362:758–761.PubMedCrossRefGoogle Scholar
  41. 41.
    Gallimore A, Glithero A, Godkin A, Tissot AC, Pluckthun A, Elliott T, et al.: Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J Exp Med 1998;187:1383–1393.PubMedCrossRefGoogle Scholar
  42. 42.
    Moskophidis D, Laine E, Zinkernagel RM: Peripheral clonal deletion of antiviral memory CD8+T cells. Eur J Immunol 1993;23:3306–3311.PubMedCrossRefGoogle Scholar
  43. 43.
    Lechner F, Wong DK, Dunbar PR, Chapman R, Chung RT, Dohrenwend P, et al.: Analysis of successful immune responses in persons infected with hepatitis C virus. J Exp Med 2000;191:1499–1512.PubMedCrossRefGoogle Scholar
  44. 44.
    Appay V, Nixon DF, Donahoe SM, Gillespie GM, Dong T, King A, et al.: HIV-specific CD8+T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 2000;192:63–75.PubMedCrossRefGoogle Scholar
  45. 45.
    Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, Ahmed R: Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 1998;188:2205–2213.PubMedCrossRefGoogle Scholar
  46. 46.
    Welsh RM: Assessing CD8T cell number and dysfunction in the presence of antigen. J Exp Med 2001;193:19F-22.CrossRefGoogle Scholar
  47. 47.
    Xiong Y, Luscher MA, Altman JD, Hulsey M, Robinson HL, Ostrowski M, et al.: Simian immunodeficiency virus (SIV) infection of a rhesus macaque in duces SIV-specific CD8+T cells with a defect in effector function that is reversible on extended interleukin-2 incubation. J Virol 2001;75:3028–3033.PubMedCrossRefGoogle Scholar
  48. 48.
    Alexander-Miller MA, Derby MA, Sarin A, Henkart PA, Berzofsky JA: Supraoptimal peptide-major histocompatibility complex causes a decrease in bc1-2 levels and allows tumor necrosis factor alpha receptor II-mediated apoptosis of cytotoxic T lymphocytes. J Exp Med 1998;188:1391–1399.PubMedCrossRefGoogle Scholar
  49. 49.
    Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ: Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 1995;377:348–351.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Martha A. Alexander-Miller
    • 1
  1. 1.Department of Microbiology & ImmunologyWake Forest University School of Medicine Medical Center BoulevardWinston-Salem

Personalised recommendations