Immunologic Research

, Volume 30, Issue 2, pp 139–153 | Cite as

Regulation of immune responses by CD1d-restricted natural killer T cells

Article

Abstract

Natural killer T (NKT) cells are a unique subset of T lymphocytes that share receptor structures and properties with conventional T lymphocytes and natural killer (NK) cells. NKT cells are specific for glycolipid antigens such as the marine sponge-derived agent α-galactosylceramide (α-GalCer) presented by the major histocompatibility complex (MHC) class I-like molcule CD1d. My laboratory has evaluated the function of NKT cells by generating and analyzing CD1d-deficient mice. These studies showed that CD1d expression is required for NKT cell development, but not absolutely necessary for the generation of polarized T helper (Th) cell responses. Further, we have studied the in vivo response of NKT cells toα-GalCer stimulation and the capacity of α-GalCer to modulate innate and adaptive immune responses. Our results revealed that, quickly following administration of α-GalCer, NKT cells expand and produce cytokines, trans-activate a variety of innate and adaptive immune cells, and promote Th2 responses that are capable of suppressing Th1-dominant autoimmunity. Our findings indicate that NKT cells play a regulatory role in the immune response and that specific activation of these cells may be exploited for therapeutic purposes.

Key Words

α-Galactosylceramide Antigen presentation Autoimmunity Experimental autoimmune encephalomyelitis CD1d Glycolipids Immunomodulation Immunotherapy Natural killer T cells Type 1 diabetes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zinkernagel RM, Doherty PC: Restriction of in vitro T cell mediated cytotoxicity in lymphocytic chriomeningitis within a syngeneic and semi-allogeneic system. Nature 1974;248:701–702.PubMedCrossRefGoogle Scholar
  2. 2.
    Porcelli SA, Modlin RL: The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol 1999;17:297–329.PubMedCrossRefGoogle Scholar
  3. 3.
    Zeng Z, Castano AR, Segelke BW, Stura EA, Peterson PA, Wilson IA: Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science 1997;277:339–345.PubMedCrossRefGoogle Scholar
  4. 4.
    Joyce S, Woods AS, Yewdell JW, et al.: Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science 1998;279:1541–1544.PubMedCrossRefGoogle Scholar
  5. 5.
    Joyce S, Van Kaer L: CD1-restricted antigen presentation: an oily matter. Curr Opin Immunol 2003; 15:95–104.PubMedCrossRefGoogle Scholar
  6. 6.
    Bendelac A, Rivera MN, Park SH, Roark JH: Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 1997;15:535–562.PubMedCrossRefGoogle Scholar
  7. 7.
    Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H: The regulatory role of Val 4 NKT cells in innate and acquired immune response. Annu Rev Immunol 2003; 21:483–513.PubMedCrossRefGoogle Scholar
  8. 8.
    Bendelac A, Killeen N, Littman DR, Schwartz RH: A subset of CD4+ thymocytes selected by MHC class I molecules. Science 1994;263:1774–1778.PubMedCrossRefGoogle Scholar
  9. 9.
    Mendiratta SK, Martin WD, Hong S, Boesteanu A, Joyce S, Van Kaer L: CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 1997;6:469–477.PubMedCrossRefGoogle Scholar
  10. 10.
    Chen YH, Chin NM, Mandal M, Wang N, Wang CR: Impaired NK1+ T cell development and early IL-4 production in CD1-deficient mice. Immunity 1997;6:459–467.PubMedCrossRefGoogle Scholar
  11. 11.
    Smiley ST, Kaplan MH, Grusby MJ: Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 1997;275:977–979.PubMedCrossRefGoogle Scholar
  12. 12.
    Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR, Brutkiewicz RR: CD1 recognition by mouse NK1+ T lymphocytes. Science 1995;268:863–865.PubMedCrossRefGoogle Scholar
  13. 13.
    Godfrey DI, Hammond KJ, Poulton LD, Smyth MJ, Baxter AG: NKT cells: facts, functions and fallacies Immunol Today 2000;21:573–583.PubMedCrossRefGoogle Scholar
  14. 14.
    Kronenberg M, Gapin L: The unconventional lifestyle of NKT cells. Nat Rev Immunol 2002;2:557–568.PubMedGoogle Scholar
  15. 15.
    Joyce S: CD1d and natural Tcells: how their properties jump-start the immune system. Cell Mol Life Sci 2001;58:442–469.PubMedCrossRefGoogle Scholar
  16. 16.
    Yoshimoto T, Bendelac A, Watson C, Hu-Li J, Paul WE: Role of NK1.1+ T cells in a TH2 response and in immunoglobulin E production. Science 1995;270: 1845–1847.PubMedCrossRefGoogle Scholar
  17. 17.
    Shawar SM, Vyas JM, Rodgers JR, Rich RR: Antigen presentation by major histocompatibility complex class I-b molecules. Annu Rev Immunol 1994;12:839–880.PubMedCrossRefGoogle Scholar
  18. 18.
    Hong S, Scherer DC, Singh N, et al.: Lipid antigen presentation in the immune system: lessons learned from CD1d knockout mice. Immunol Rev 1999;169:31–44.PubMedCrossRefGoogle Scholar
  19. 19.
    Roopenian DC, Christianson GJ, Sproule TJ, et al.: The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol 2003;170:3528–3533.PubMedGoogle Scholar
  20. 20.
    Delovitch TL, Wilson SB: Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nat Rev Immunol 2003:3:211–222.PubMedCrossRefGoogle Scholar
  21. 21.
    Natori T, Koezuka Y, Higa T: Agelasphins, novel α-galactosylceramides from the marine sponge Agelas Mauritianus. Tetrahedron Lett 1993;34:5591–5592.CrossRefGoogle Scholar
  22. 22.
    Kawano T, Cui J, Koezuka Y, et al.: CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 1997:278:1626–1629.PubMedCrossRefGoogle Scholar
  23. 23.
    Sidobre S, Naidenko OV, Sim BC, Gascoigne NR, Garcia KC, Kronenberg M: The V α14 NKT cell TCR exhibits high-affinity binding to a glycolipid/CD1d complex. J Immunol 2002:169:1340–1348.PubMedGoogle Scholar
  24. 24.
    Cantu Cr, Benlagha K, Savage PB, Bendelac A, Teyton L: The paradox of immune molecular recognition of α-galactosylceramide: low affinity, low specificity for CD1d, high affinity for αβ TCRs. J Immunol 2003; 170:4673–4682.PubMedGoogle Scholar
  25. 25.
    Stanic AK, Shashidharamurthy R, Bezbradica JS, et al.: Another view of T cell antigen recognition: co-operative engagement of glycolipid antigens by Va14Ja18natural T cell receptor. J Immunol 2003;171:4539–4551.PubMedGoogle Scholar
  26. 26.
    Eberl G, MacDonald HR: Rapid death and regeneration of NKT cells in anti-CD3epsilon-or IL-12-treated mice: a major role for bone marrow in NKT cell homeostasis. Immunity 1998;9:345–353PubMedCrossRefGoogle Scholar
  27. 27.
    Eberl G, MacDonald HR: Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 2000;30:985–992.PubMedCrossRefGoogle Scholar
  28. 28.
    Leite-de-Moraes MC, Herbelin A, Gouarin C, Koezuka Y, Schneider E, Dy M: Fas/Fas ligand interactions promote activation-induced cell death of NK T lymphocytes. J Immunol 2000;165:4367–4371.PubMedGoogle Scholar
  29. 29.
    Wilson MT, Singh AK, Van Kaer L: Immunotherapy with ligands of natural killer T cells. Trends Mol Med 2002;8:225–231.PubMedCrossRefGoogle Scholar
  30. 30.
    Wilson MT, Van Kaer L: Natural killer Tcells as targets for therapeutic intervention in autoimmune diseases. Curr Pharm Des 2003;9:201–220.PubMedCrossRefGoogle Scholar
  31. 31.
    Burdin N, Brossay L, Kronenberg M: Immunization with α-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur J Immunol 1999;29:2014–2025.PubMedCrossRefGoogle Scholar
  32. 32.
    Singh N, Hong S, Scherer DC, et al.: Activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J Immunol 1999;163:2373–2377.PubMedGoogle Scholar
  33. 33.
    Fujii S, Shimizu K, Kronenberg M, Steinman RM: Prolonged IFN-γ-producing NKT response induced withα-galactosylceramide-loaded DCs. Nat Immunol 2002;3: 867–874.PubMedCrossRefGoogle Scholar
  34. 34.
    Hammond KJ, Pellicci DG, Poulton LD, et al.: CD1d-restricted NKT cells: an interstrain comparison. J Immunol 2001;167:1164–1173.PubMedGoogle Scholar
  35. 35.
    Matsuda JL, Naidenko OV, Gapin L, et al.: Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 2000;192:741–754.PubMedCrossRefGoogle Scholar
  36. 36.
    Benlagha K, Weiss A, Beavis A, Teyton L, Bendelac A: In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med 2000;191:1895–1903.PubMedCrossRefGoogle Scholar
  37. 37.
    Stanic AK, De Silva AD, Park JJ, et al.: Defective presentation of the CD1d1-restricted natural Va14Ja18 NKT lymphocyte antigen caused by β-D-glucosylceramide synthase deficiency. Proc Natl Acad Sci USA 2003;100:1849–1854.PubMedCrossRefGoogle Scholar
  38. 38.
    Wilson MT, Johansson C, Olivares-Villagomez D, et al.: The response of natural killer Tcells to glycolipid antigens is characterized by surface receptor downmodulation and expansion. Proc Natl Acad Sci USA 2003; 100:10913–10918.PubMedCrossRefGoogle Scholar
  39. 39.
    Schonrich G, Kalinke U, Momburg F, et al.: Downregulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell 1991;65:293–304.PubMedCrossRefGoogle Scholar
  40. 40.
    Liu H, Rhodes M, Wiest DL, Vignali DA: On the dynamics of TCR: CD3 complex cell surface expression and downmodulation. Immunity 2000;13:665–675.PubMedCrossRefGoogle Scholar
  41. 41.
    Chen H, Huang H, Paul WE: NK1.1+ CD4+ T cells lose NK1.1 expression upon in vitro activation. J Immunol 1997;158:5112–5119.PubMedGoogle Scholar
  42. 42.
    Yang J-Q, Saxena V, Xu H, Van Kaer L, Wang CR, Singh RR: Repeated α-galactosylceramide administration results in expansion of V α14 NKT cells and alleviates inflammatory dermatitis in MRL lpr/lpr mice. J Immunol 2003;171:4439–4460.PubMedGoogle Scholar
  43. 43.
    Crowe NY, Uldrich AP, Kyparissoudis K, et al.: Glycolipid antigen drives rapid expansion and sustained cytokine production by NKT cells. J Immunol 2003:171:4020–4027.PubMedGoogle Scholar
  44. 44.
    Kirby AC, Yrlid U, Wick MJ: The innate immune response differs in primary and secondary Salmonella infection. J Immunol 2002;169:4450–4459.PubMedGoogle Scholar
  45. 45.
    Emoto M, Emoto Y, Kaufmann SH: Interleukin-4-producing CD4+ NK1.1+ TCR α/β intermediate liver lymphocytes are down-regulated by Listeria monocytogenes. Eur J Immunol 1995;25:3321–3325PubMedCrossRefGoogle Scholar
  46. 46.
    Hobbs JA, Cho S, Roberts TJ, et al.: Selective loss of natural killer T cells by apoptosis following infection with lymphocytic choriomeningitis virus. J Virol 2001;75:10746–10754.PubMedCrossRefGoogle Scholar
  47. 47.
    Kitamura H, Iwakabe K, Yahata T, et al.: The natural killer T (NKT) cell ligandα-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 1999;189:1121–1128.PubMedCrossRefGoogle Scholar
  48. 48.
    Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM: Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and there by acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 2003;198:267–279.PubMedCrossRefGoogle Scholar
  49. 49.
    Carnaud C, Lee D, Donnars O, et al.: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 1999;163:4647–4650.PubMedGoogle Scholar
  50. 50.
    Atkinson MA, Leiter EH: The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med 1999; 5:601–604.PubMedCrossRefGoogle Scholar
  51. 51.
    Bach JF, Chatenoud L: Tolerance to islet autoantigens in type 1 diabetes. Annu Rev Immunol 2001;19:131–161.PubMedCrossRefGoogle Scholar
  52. 52.
    Hong S, Wilson MT, Serizawa I, et al.: The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 2001;7:1052–1056.PubMedCrossRefGoogle Scholar
  53. 53.
    Gombert JM, Herbelin A, Tancrede-Bohin E, Dy M, Carnaud C, Bach JF: Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur J Immunol 1996;26:2989–2998.PubMedCrossRefGoogle Scholar
  54. 54.
    Hammond KJL, Poulton LD, Palmisano LJ, Silveira PA, Godfrey DI, Baxter AG: α/β-T cell receptor (TCR)+CD4CD8 (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J Exp Med 1998;187:1047–1056.PubMedCrossRefGoogle Scholar
  55. 55.
    Laloux V, Beaudoin L, Jeske D, Camaud C, Lehuen A: NK T cell-induced protection against diabetes in Vα14-Jα281 transgenic nonobese diabetic mice is associated with a Th2 shift circumscribed regionally to the islets and functionally to islet autoantigen. J Immunol 2001;166:3749–3756.PubMedGoogle Scholar
  56. 56.
    Wang B, Geng YB, Wang CR: CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J Exp Med 2001;194:313–320.PubMedCrossRefGoogle Scholar
  57. 57.
    Sharif S, Arreaza GA, Zucker P, et al.: Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes. Nat Med 2001;7:1057–1062.PubMedCrossRefGoogle Scholar
  58. 58.
    Naumov YN, Bahjat KS, Gausling R, et al.: Activation of CD 1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc Natl Acad Sci USA 2001;98:13838–13843.PubMedCrossRefGoogle Scholar
  59. 59.
    Steinman L: Assessment of animal models for MS and demyelinating disease in the design of rational therapy. Neuron 1999;24:511–514.PubMedCrossRefGoogle Scholar
  60. 60.
    Pearson CI, McDevitt HO: Redirecting Th1 and Th2 responses in autoimmune disease. Curr Top Microbiol Immunol 1999;238:79–122.PubMedGoogle Scholar
  61. 61.
    Owens T, Wekerle H, Antel J: Genetic models for CNS inflammation. Nat Med 2001;7:161–166.PubMedCrossRefGoogle Scholar
  62. 62.
    Singh AK, Wilson MT, Hong S, et al.: Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med 2001;194: 1801–1811.PubMedCrossRefGoogle Scholar
  63. 63.
    Yoshimoto T, Bendelac A, Hu-Li J, Paul WE: Defective IgE production by SJL mice is linked to the absence of CD4+, NK1.1+T cells that promptly produce interleukin 4. Proc Natl Acad Sci USA 1995;92:11931–11934.PubMedCrossRefGoogle Scholar
  64. 64.
    Jahng AW, Maricic I, Pedersen B, et al.: Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J Exp Med 2001; 194:1789–1799.PubMedCrossRefGoogle Scholar
  65. 65.
    Miyamoto K, Miyake S, Yamamura T: A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001;413:531–534.PubMedCrossRefGoogle Scholar
  66. 66.
    Furlan R, Bergami A, Cantarella D, et al.: Activation of invariant NKT cells by α-GalCer administration protects mice from MOG35-55 induced EAE: critical roles for administration route and IFN-γ. Eur J Immunol 2003; 33:1830–1838.PubMedCrossRefGoogle Scholar
  67. 67.
    Brossay L, Chioda M, Burdin N, et al.: CD1d-mediated recognition of an α-galactosyl ceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med 1998;188:1521–1528.PubMedCrossRefGoogle Scholar
  68. 68.
    Spada FM, Koezuka Y, Porcelli SA: CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J Exp Med 1998;188:1529–1534.PubMedCrossRefGoogle Scholar
  69. 69.
    Motsinger A, Azimzadeh A, Stanic AK, et al.: Identification and simian immunodeficiency virus infection of CD1d-restricted macaque natural killer T cells. J Virol 2003;77:8153–8158.PubMedCrossRefGoogle Scholar
  70. 70.
    Osman Y, Kawamura T, Naito T, et al.: Activation of hepatic NKT cells and subsequent liver injury following administration of α-galactosyl ceramide. Eur J Immunol 2000;30:1919–1928.PubMedCrossRefGoogle Scholar
  71. 71.
    Giaccone G, Punt CJA, Ando Y, et al.: A phase I study of natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 2002;8:3702–3709.PubMedGoogle Scholar
  72. 72.
    Emoto M, Kaufmann SH: Liver NKT cells; an account of heterogeneity. Trends Immunol 2003;24:364–369.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyVanderbilt University School of Medicine Medical Center NorthNashville

Personalised recommendations