Immunologic Research

, Volume 29, Issue 1–3, pp 303–311 | Cite as

Identification and characterization of CD8+ suppressor T cells

  • James C. Zimring
  • Judith A. Kapp
Immunology at Emory University

Abstract

It has long been appreciated that certain subsets of T cells are capable of suppressing immune reactions. Initially, such T cells were described as CD8+ suppressor T cells (Ts) and there is a vast body of research spanning 30 years that describes the immunobiology of CD8+ Ts. However, studies on CD8+ Ts have suffered from the inability to distinguish CD8+ Ts from CD8+ T cells of other phenotypes. Here we present a brief history of CD8+ Ts, a review of recent progress distinguishing CD8+ Ts as a unique subset of CD8+ T cells, and an overview of the evolving immunological context in which CD8+ Ts function.

Key Words

Suppressor T cell Tolerance Ganglioside CD75s 984 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gershon RK, Kondo K: Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 1970;18:723–737.PubMedGoogle Scholar
  2. 2.
    Cantor H, Shen FW, Boyse EA: Separation of helper T cells from suppressor T cells expressing different Ly components. II. Activation by antigen: after immunization, antigen-specific suppressor and helper activities are mediated by distinct T-cell subclasses. J Exp Med 1976;143:1391–1340.PubMedCrossRefGoogle Scholar
  3. 3.
    Jandinski J, Cantor H, Tadakuma T, Peavy DL, Pierce CW: Separation of helper T cells from suppressor T cells expressing different Ly components. I. Polyclonal activation: suppressor and helper activities are inherent properties of distinct T-cell subclasses. J Exp Med 1976;143:1382–1390.PubMedCrossRefGoogle Scholar
  4. 4.
    Tada T, Okumura K: The role of antigen-specific T cell factors in the immune response. Adv Immuno 1979;28:1–87.CrossRefGoogle Scholar
  5. 5.
    Benacerraf B, Germain RN: A single major pathway of T-lymphocyte interactions in antigen-specific immune suppression. Scand J Immunol 1981;13:1–10.PubMedCrossRefGoogle Scholar
  6. 6.
    Green DR, Flood PM, Gershon RK: Immunoregulatory T-cell pathways. Annu Rev Immunol 1983;1:439–463.PubMedCrossRefGoogle Scholar
  7. 7.
    Dorf ME, Benacerraf B: Suppressor cells and immunoregulation. Annu Rev Immunol 1984;2:127–157.PubMedCrossRefGoogle Scholar
  8. 8.
    Jensen PE, Kapp JA: Stimulation of helper T cells and dominant suppressor T cells that recognize autologous insulin. J Mol Cell Immunol 1985;2:133–139.PubMedGoogle Scholar
  9. 9.
    Hayes CE, Klyczek KK: The I-J glycoprotein: genetic control, biochemistry, and function. Immunolog Rev 1985;83:41–59.CrossRefGoogle Scholar
  10. 10.
    Waltenbaugh C: Regulation of immune responses by I-J gene products. I. Production and characterization of anti-I-J monoclonal antibodies. J Exp Med 1981;154: 1570–1583.PubMedCrossRefGoogle Scholar
  11. 11.
    Moller G: Do suppressor T cells exist? Scand J Immunol 1988;27:247–250.PubMedCrossRefGoogle Scholar
  12. 12.
    Al-Adra AR, Pilarski LM: Antigen-specific suppression of cytotoxic T cell responses in mice. I. Suppressor T cells are not cytotoxic cells. Eur J Immunol 1978;8: 504–511.PubMedCrossRefGoogle Scholar
  13. 13.
    Schwartz A, Sutton SL, Gershon RK: Regulation of in vitro cytotoxic T lymphocyte generation. II. Demonstration of noncytotoxic alloantigen-specific suppressor T lymphocytes. Eur J Immunol 1982;12:380–386.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu Z, Tugulea S, Cortesini R, Suciu-Foca N: Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8+CD28− T cells. Int Immunoll 998; 10:775–783.Google Scholar
  15. 15.
    Bucy RP: Alloantigen-specific suppressor T cells are not inhibited by cyclosporin A, but do require IL 2 for activation. J Immunol 1986;137:809–813.PubMedGoogle Scholar
  16. 16.
    Hollander N: Lyt-2+ suppressor T cells are resistant to anti-Lyt-2 antibody blocking. J Immunol 1985;134: 2205–2208.PubMedGoogle Scholar
  17. 17.
    Ke Y, Kapp JA: Oral antigen inhibits priming of CD8+ CTL, CD4+ T cells, and antibody responses while activating CD8+ suppressor T cells. J Immunol 1996;156: 916–921.PubMedGoogle Scholar
  18. 18.
    Ferguson TA, Herndon J, Elzey B, Griffith T, Schoenberger S, Green DR: uptake of apoptotic antigen-coupled cells by lymphoid dendritic cells and cross-priming of CD8+ T cells produce active immune unresponsiveness. J Immunol 2002;168:5589–5595.PubMedGoogle Scholar
  19. 19.
    Chen Y, Takata M, Maiti PK, Rector ES, Sehon AH: Characterization of suppressor T cell clones derived from a mouse tolerized with conjugates of ovalbumin and monomethoxypolyethylene glycol. Cell Immunol 1992;142:16–27.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhou J, Carr RI, Liwski RS, Stadnyk AW, Lee TD: Oral exposure to alloantigen generates intragraft CD8+regulatory cells. J Immunol 2001;167:107–113.PubMedGoogle Scholar
  21. 21.
    Ke Y, Li Y, Kapp JA: Ovalbumin injected with complete Freund's adjuvant stimulates cytolytic responses. Eur J Immunol 1995;25:549–553.PubMedCrossRefGoogle Scholar
  22. 22.
    Matloubian M, Suresh M, Glass A, Galvan M, Chow K, Whitmire JK, et al.: A role for perforin in downregulating T-cell responses during chronic viral infection. J Virol 1999;73:2527–2536.PubMedGoogle Scholar
  23. 23.
    Chen Y, Mohapatra S, Mohapatra SS, Sehon AH: Cytokine gene expression of CD8+ suppressor T cells induced by tolerogenic conjugates of antigen and mPEG. Cell Immunol 1993;149:409–421.PubMedCrossRefGoogle Scholar
  24. 24.
    Field AC, Caccavelli L, Bloch MF, Bellon B: Regulatory CD8+ T cells control neonatal tolerance to a Th2-mediated autoimmunity. J Immunol 2003;170:2508–2515.PubMedGoogle Scholar
  25. 25.
    Devens BH, Koontz AW, Kapp JA, Pierce CW, Webb DR: Involvement of two distinct regulatory T cell populations in the antigen-specific suppression of cytolytic T cell generation. J Immunol 1991;146:1394–1401.PubMedGoogle Scholar
  26. 26.
    Devens BH, Webb DR: Phenotypic identification of specific and nonspecific suppressor T-cell populations involved in the in vivo response to alloantigen. Cell Immunol 1995;161:1–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Kapp JA, Pierce CW, Webb DR, Devens B, Godfrey W, Fukuse S, et al.: Characterization of the epitope recognized by a mAb that reacts differentially with murine suppressor T cells. Int Immunol 1995;7: 1319–1330.PubMedCrossRefGoogle Scholar
  28. 28.
    Fitch FW, Engers HD, Cerottini JC, Bruner KT: Generation of cytotoxic T lymphocytes in vitro. VII. Suppressive effect of irradiated MLC cells on CTL response. J Immunol 1976;116:716–723.PubMedGoogle Scholar
  29. 29.
    Zimring JC, Levery SB, Kniep B, Kapp LM, Fuller M, Kapp JA: CD75s is a marker of murine CD8+ suppressor T cells. Int Immunol 2003;15:1389–1399.PubMedCrossRefGoogle Scholar
  30. 30.
    Mason D, Andre P, Bensussan A, Buckley C, Civin C, Clark E, et al.: CD antigens 2002. Blood 2002;99: 3877–3880.PubMedCrossRefGoogle Scholar
  31. 31.
    Mason D, Andre P, Bensussan A, Buckley C, Civin C, Clark E, et al.: CD antigens 2001. Immunology 2001;103:401–406.PubMedCrossRefGoogle Scholar
  32. 32.
    Kniep B, Muhlradt PF, Dorken B, Moldenhauer G, Vilella R, Schwartz-Albiez R: Monoclonal antibodies against the human lymphocyte differentiation antigen CD 76 bind to gangliosides. FEBS Lett 1990;261: 347–349.PubMedCrossRefGoogle Scholar
  33. 33.
    Feizi T: Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 1985;314: 53–57.PubMedCrossRefGoogle Scholar
  34. 34.
    Kniep B, Schakel K, Nimtz M, Schwartz-Albiez R, Schmitz M, Northoff H, et al.: Differential expression of alpha 2–6 sialylated polylactosamine structures by human B and T cells. Glycobiology 1999;9:399–406.PubMedCrossRefGoogle Scholar
  35. 35.
    Terrazas LI, W KL, PD, ME, H DA Jr: The Schistosome oligosaccharide lacto-N-neotetraose expands Gr1+cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4+ cells: a potential mechanism for immune polarization in helminth infections. J Immunol 2001;167:5294–5303.PubMedGoogle Scholar
  36. 36.
    Chang CC, Ciubotariu R, Manavalan JS, Yuan J, Colovai AI, Piazza F, et al.: Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. (comment). Nat Immunol 2002;3:237–243.PubMedCrossRefGoogle Scholar
  37. 37.
    Nishizuka Y, Sakakura T: Thymus and reproduction: sexlinked dysgenesia of the gonad after neonatal thymectomy in mice. Science 1969;166:753–755.PubMedCrossRefGoogle Scholar
  38. 38.
    Sakaguchi S, Takahashi T, Nishizuka Y: Study on cellular events in post-thymectomy autoimmune oophoritis in mice. II. Requirement of Lyt-1 cells in normal female mice for the prevention of oophoritis. J Exp Med 1982;156:1577–1586.PubMedCrossRefGoogle Scholar
  39. 39.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155:1151–1164.PubMedGoogle Scholar
  40. 40.
    Zhang ZX, Young K, Zhang L: CD3+CD4-CD8- alphabeta-TCR+ T cell as immune regulatory cell. J Mol Med 2001;79:419–427.PubMedCrossRefGoogle Scholar
  41. 41.
    Young KJ, Yang L, Phillips MJ, Zhang L: Donor-lymphocyte infusion induces transplantation tolerance by activating systemic and graft-infiltrating double-negative regulatory T cells. Blood 2002;100:3408–3414.PubMedCrossRefGoogle Scholar
  42. 42.
    Young KJ, Zhang L: The nature and mechanisms of DN regulatory T-cell mediated suppression. Hum Immunol 2002;63:926–934.PubMedCrossRefGoogle Scholar
  43. 43.
    Sonoda KH, Faunce DE, Taniguchi M, Exley M, Balk S, Stein-Streilein J: NK T cell-derived IL-10 is essential for the differentiation of antigen-specific T regulatory cells in systemic tolerance. J Immunol 2001;166:42–50.PubMedGoogle Scholar
  44. 44.
    Ke Y, Pearce K, Lake JP, Ziegler HK, Kapp JA: Gamma delta T lymphocytes regulate the induction and maintenance of oral tolerance. J Immunol 1997;158:3610–3618.PubMedGoogle Scholar
  45. 45.
    Xu Y, Kapp JA: gammadelta T cells are critical for the induction of anterior chamber-associated immune deviation. Immunology 2001;104:142–148.PubMedCrossRefGoogle Scholar
  46. 46.
    Kapp JA, Ke Y: The role of gammadelta TCR-bearing T cells in oral tolerance. Res Immunol 1997;148:561–567.PubMedCrossRefGoogle Scholar
  47. 47.
    D'Orazio TJ, Niederkorn JY: Splenic B cells are required for tolerogenic antigen presentation in the induction of anterior chamber-associated immune deviation (ACAID). Immunology 1998;95:47–55.PubMedCrossRefGoogle Scholar
  48. 48.
    Fallarino F, Vacca C, Orabona C, Belladonna ML, Bianchi R, Marshall B, et al.: Functional expression of indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells. Intl Immunol 2002 Jan; 14(1):65–68.CrossRefGoogle Scholar
  49. 49.
    Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, et al.: Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002 Sep 13;297(5588):1867–1870.PubMedCrossRefGoogle Scholar
  50. 50.
    Min WP, Zhou D, Ichim TE, Strejan GH, Xia X, Yang J, et al.: Inhibitory feedback loop between tolerogenic dendritic cells and regulatory T cells in transplant tolerance. J Immunol 2003;170:1304–1312.PubMedGoogle Scholar
  51. 51.
    Mellor AL, Baban B, Chandler P, Marshall B, Jhaver K, Hansen A, et al.: Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J Immunol 2003;171(4): 1652–1655.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • James C. Zimring
    • 1
  • Judith A. Kapp
    • 1
    • 2
  1. 1.Department of PathologyEmory University School of MedicineAtlanta
  2. 2.Department of OphthalmologyEmory University School of MedicineAtlanta

Personalised recommendations