Immunologic Research

, Volume 28, Issue 3, pp 255–264 | Cite as

T-cell anergy

From phenotype to genotype and back
  • Christine M. Seroogy
  • C. Garrison Fathman
Article

Abstract

For many decades, anergy has been used as a descriptive term to describe a state of antigen-specific unresponsiveness. A better understanding of this phenotype was revealed in the 1980s using in vitro model systems. These model systems demonstrated that protein synthesis and mobilization of Ca2+ was required leading to the pursuit of a novel gene(s) that would be unique to the anergy phenotype. Several putative “anergy factors” have been suggested. In this review, we provide an overview of the anergy phenotype and proposed anergy-related genes. To date, no single gene has been described that would completely fulfill the criteria of an “anergy factor”. We review work from our laboratory describing a novel gene that we have termed Gene Related to Anergy In Lymphocytes (GRAIL) that is upregulated in T cells anergized in vitro and in vivo and, following transduction into T cells, reiterates the anergy phenotype.

Key Words

Tolerance Anergy Soluble peptide Superantigens T lymphocytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Staveley-O'Carroll K, Sotomayer E, Montgomery J, et al.: Induction of antigen-specific T cell anergy: An early event in the course of tumor progression. Proc Natl Acad Sci USA 1998;95(3):1178–1183.PubMedCrossRefGoogle Scholar
  2. 2.
    Dresser DW: Effectiveness of lipid and lipidophilic substances as adjuvants. Nature 1961;191:1169.PubMedCrossRefGoogle Scholar
  3. 3.
    Blaha P, Bigenzahn S, Koporc Z, et al.: The influence of immunosuppressive drugs on tolerance induction through bone marrow transplantation with costimulation blockade. Blood 2002.Google Scholar
  4. 4.
    Telander DG, Malvey EN, Mueller DL: Evidence for repression of IL-2 gene activation in anergic T cells. J Immunol 1999;162(3):1460–1465.PubMedGoogle Scholar
  5. 5.
    Cho EA, Riley MP, Sillman AL, et al.: Altered protein tyrosine phosphorylation in anergic Thl cells. J Immunol 1993;151(1):20–28.PubMedGoogle Scholar
  6. 6.
    Pape KA, Merica MP, Sillman AL, et al.: Direct evidence that functionally impaired CD4+T cells persist in vivo following induction of peripheral tolerance. J Immunol 1998;160(10):4719–4729.PubMedGoogle Scholar
  7. 7.
    Tanchot C, Barber DL, Chiodetti L, et al.: Adaptive tolerance of CD4+ T cells in vivo: multiple thresholds in response to a constant level of antigen presentation. J Immunol 2001(4):2030–2039.Google Scholar
  8. 8.
    Swain SL: Generation and in vivo persistence of polarized Th1 and Th2 memory cells. Immunity 1994; 1(7):543–552.PubMedCrossRefGoogle Scholar
  9. 9.
    Gavin MA, Clarke SR, Negrou E, et al.: Homeostasis and anergy of CD4(+)CD25(+) suppressor T cells in vivo. Nat Immunol 2002;3(1):33–41.PubMedCrossRefGoogle Scholar
  10. 10.
    Healy JI, Dolmetsch RE, Lewis RS, et al.: Quantitative and qualitative control of antigen receptor signalling in tolerant B lymphocytes. Novartis Found Symp 1998; 215:137–144; discussion 144–145, 186–190.PubMedGoogle Scholar
  11. 11.
    Su B, Jacinto E, Hibi M, et al.: JNK is involved in signal integration during costimulation of T lymphocytes. Cell 1994;77(5):727–736.PubMedCrossRefGoogle Scholar
  12. 12.
    Boussiotis VA, Freeman GJ, Berezvoskaya A, et al.: Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science 1997; 278(5335):124–128.PubMedCrossRefGoogle Scholar
  13. 13.
    Sebzda E, Bracke M, Tugal T, et al.: Rapl A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling. Nat Immunol 2002; 3(3):251–258.PubMedCrossRefGoogle Scholar
  14. 14.
    Sundstedt A, Dohlsten M: In vivo anergized CD4+ T cells have defective expression and function of the activating protein-1 transcription factor. J Immunol 1998;161(11):5930–5936.PubMedGoogle Scholar
  15. 15.
    Kang SM, Beverly B, Tran AC, et al.: Transactivation by AP-1 is a molecular target of T cell clonal anergy. Science 1992;257(5073):1134–1138.PubMedCrossRefGoogle Scholar
  16. 16.
    Powell JD, Bruniquel D, Schwartz RH: TCR engagement in the absence of cell cycle progression leads to T cell anergy independent of p27(Kipl). Eur J Immunol 2001;31(12):3737–3746.PubMedCrossRefGoogle Scholar
  17. 17.
    Wells AD, Walsh MC, Sankaran D, et al.: T cell effector function and anergy avoidance are quantitatively linked to cell division. J Immunol 2000;165(5): 2432–2443.PubMedGoogle Scholar
  18. 18.
    Wells AD, Walsh MC, Bluestone JA, et al.: Signaling through CD28 and CTLA-4 controls two distinct forms of T cell anergy. J Clin Invest 2001;108(6): 895–903.PubMedCrossRefGoogle Scholar
  19. 19.
    Krummel MF, Allison JP: CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression uponactivation of resting T cells. J Exp Med 1996;183(6): 2533–2540.PubMedCrossRefGoogle Scholar
  20. 20.
    Greenwald RJ, Boussiotis VA, Lorsbach RB, et al.: CTLA-4 regulates induction of anergy in vivo. Immunity 2001;14(2):145–155.PubMedCrossRefGoogle Scholar
  21. 21.
    Boussiotis VA, Freeman GJ, Taylor PA, et al.: p27kipl functions as an anergy factor inhibiting interleukin 2 transcription and clonal expansion of alloreactive human and mouse helper T lymphocytes. Nat Med 2000; 6(3):290–297.PubMedCrossRefGoogle Scholar
  22. 22.
    Tzachanis D, Freeman GJ, Hirano N, et al.: Tobis a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat Immunol 2001;2(12): 1174–1182.PubMedCrossRefGoogle Scholar
  23. 23.
    Yoshida Y, Tanaka S, Umemori H, et al.: Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell 2000;103(7):1085–1097.PubMedCrossRefGoogle Scholar
  24. 24.
    Yamashiro H, Odani Y, Hozumi N, et al.: Hierarchical signaling thresholds determine the fates of naive T cells: partial priming leads naive T cells to unresponsiveness. Biochem Biophys Res Commun 2002;299(1):148–154.PubMedCrossRefGoogle Scholar
  25. 25.
    Korthauer U, Nagel W, Davis EM, et al.: Anergic T lymphocytes selectively express an integrin regulatory protein of the cytohesin family. J Immunol 2000;164(1): 308–318.PubMedGoogle Scholar
  26. 26.
    Macian F, Garcia-Cozar F, Im SH, et al.: Transcriptional mechanisms underlying lymphocyte tolerance. Cell 2002;109(6):719–731.PubMedCrossRefGoogle Scholar
  27. 27.
    Cerdan C, Devilard E, Xerri L, et al.: The C-class chemokine lymphotactin costimulates the apoptosis of human CD4(+) T cells. Blood 2001;97(8):2205–2212.PubMedCrossRefGoogle Scholar
  28. 28.
    Kurt RA, Bauck M, Hamma S, et al.: Role of C chemokine lymphotactin in mediating recruitment of antigen-specific CD62L(lo) cells in vitro and in vivo. Cell Immunol 2001;209(2):83–88.PubMedCrossRefGoogle Scholar
  29. 29.
    Bachmaier K, Krawczyk C, Kozieradzki I, et al.: Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cb1-b. Nature 2000;403(6766):211–216.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang J, Bardos T, Li D, et al.: Cutting edge: regulation of T cell activation threshold by CD 28 costimulation through targeting Cb1-b for ubiquitination. J Immunol 2002;169(5):2236–2240.PubMedGoogle Scholar
  31. 31.
    Amsen D, Revilla Calvoe C, Osborne BA, et al.: Costimulatory signals are required for induction of transcription factor Nur77 during negative selection of CD4(+)CD8(+) thymocytes. Proc Natl Acad Sci USA 1999;96(2):622–627.PubMedCrossRefGoogle Scholar
  32. 32.
    Anandasabapathy N, Ford G, Bloom D, et al.: GRAIL: An E3 Ubiquitin Ligase that Inhibits Cytokine Gene Transcription 1s Expressed in Anergic CD4+ T Cells. Immunity 2003;18:1–20.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Christine M. Seroogy
    • 1
  • C. Garrison Fathman
    • 2
  1. 1.Department of PediatricsUniversity of WisconsinMadison
  2. 2.Department of MedicineDivision of Immunology and RheumatologyStanford

Personalised recommendations