Immunologic Research

, Volume 27, Issue 2–3, pp 367–385 | Cite as

Complement

Structure, functions, evolution, and viral molecular mimicry
  • Dimitrios Mastellos
  • Dimitrios Morikis
  • Stuart N. Isaacs
  • M. Claire Holland
  • Cristoph W. Strey
  • John D. Lambris
Article

Abstract

The complement (C′) system has long been recognized as an important mediator of innate immune defense and inflammation. In recent years there is increasing evidence suggesting that complement components may also participate in non-inflammatory and developmental processes. Here we review our current work on the structural-functional aspects of C3-ligand interactions and the rational design of small-sized complement inhibitors. We present a novel, proteomics-based, approach to studying protein-protein interactions within the C′ system and discuss our progress in the study of viral immune evasion strategies. Furthermore we discuss the involvement of complement proteins in organ regeneration and hematopoietic development.

Key Words

Complement inhibitors proteomics immune evasion evolution regeneration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sunyer JO, Lambris JD Evolution and diversity of the complement system of poikilothermic vertebrates. Immunol Rev 1998;166: 39–57.PubMedCrossRefGoogle Scholar
  2. 2.
    Lambris JD, ed. The third component of complement: chemistry and biology. Curr Topics Microb Immunol 1990;153:45–72.Google Scholar
  3. 3.
    Volanakis JE: Overview of the complement system: in (Volanakis JE, Frank M, eds) The Human Complements System in Healthand Disease Marcel Dekker Inc. 1998, pp. 9–32.Google Scholar
  4. 4.
    Dempsey PW, Allison MD, Akkaraju S, et al.: C3d of complment as a molecular adjuvant: bridging innate and acquired immunity. Science 1996;271:348–350.PubMedCrossRefGoogle Scholar
  5. 5.
    Lambris JD: The multifunctional role of C3, the third component of complement. Immunol Today 1988;9:387–393.PubMedCrossRefGoogle Scholar
  6. 6.
    Muller-Eberhard HJ: Molecular organization and function of the complement system. Annu Rev Biochem 1988;57:321–347.PubMedCrossRefGoogle Scholar
  7. 7.
    Lambris JD, Sahu A, Wetsel R: (1988) The chemistry and biology of C3, C4, and C5; in Volanakis JE, Frank M, (eds) The Human Complement System in Health and Disease, Marcel Dekker Inc., 1998, pp. 83–118.Google Scholar
  8. 8.
    Perkins SJ, Sim RB: Molecular modelling of human complement component C3 and its fragments by solution scattering. Eur J Biochem 1986;157:155–168.PubMedCrossRefGoogle Scholar
  9. 9.
    Wetsel RA: Structure, function and cellular expression of complement anaphylatoxin receptors. Curr Opin Immunol 1995;7:48–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Alsenz J, Avila D, Huemer HP, et al.: Phylogeny of the third component of complement, C3: Analysis of the conservation of human CR1, CR2, H, and B bindingsites, concanavalin A binding sites, and thiolester bond in the C3 from different species. Develop Compar Immunol 1992;16:63–76.CrossRefGoogle Scholar
  11. 11.
    Lambris JD, Alsenz J, Schulz TF, et al.: Mapping of the properdin-binding site in the third component of complement. Biochem J 1984; 217:323–326.PubMedGoogle Scholar
  12. 12.
    Lambris JD, Lao Z, Oglesby TJ, et al.: Dissection of CR1, factor H, MCP, and factor B binding and functional sites in third complement component. J Immunol 1996;156:4821–4832.PubMedGoogle Scholar
  13. 12a.
    Mastellos D, Lambris JD: Complement: more than a ‘guard’ against invading pathogens? Trends Immunol 2002;23: 485–491.PubMedCrossRefGoogle Scholar
  14. 13.
    DiScipio RG, Smith CA, Müller-Eberhard HJ, et al.: The activation of human complement component C5 by a fluid phase C5 convertase. J Biol Chem 1983;258: 10,629–10,636.Google Scholar
  15. 14.
    Morgan BP: Regulation of the complement membrane attack pathway. Crit Rev Immunol 1999; 19:173–198.PubMedGoogle Scholar
  16. 15.
    Halperin JA, Taratuska A, Nicholsonweller A: Terminal Complement Complex C5b-9 Stimulates Mitogenesis in 3T3 Cells. J Clin Invest 1993;91:1974–1978.PubMedCrossRefGoogle Scholar
  17. 16.
    Szakonyi G, Guthridge JM, Li D, et al.: Structure of complement receptor 2 in complex with its C3 d ligand. Science 2001;292: 1725–1728.PubMedCrossRefGoogle Scholar
  18. 17.
    Nagar B, Jones RG, Diefenbach RJ, et al.: X-ray crystal structure of C3d: A C3 fragment and ligand for complement receptor 2. Science 1998;280:1277–1281.PubMedCrossRefGoogle Scholar
  19. 18.
    Clemenza L, Isenman DE: Structure-guided identification of C 3d residues essential for rits binding to complement receptor 2 (CD 21). J Immunol 2000;165: 3839–3848.PubMedGoogle Scholar
  20. 19.
    Guaridge JM, Rakstang JK, Young KA, et al.: Structural studies in solution of the recombinant N-terminal pair of short consensus/complement repeat domains of complement receptor type 2 (CR2/CD21) and interactions with its ligand C 3dg. Biochemistry 2001;40:5931–5941.CrossRefGoogle Scholar
  21. 20.
    Guthridge JM, Young K, Gipson MG, et al.: Epitope mapping using the X-ray crystallographic structure of complement receptor type 2 (CR2)/CD21: identification of a highly inhibitory monoclonal antibody that directly recognizes the CR2-C3d interface. J Immunol 2001;167:5758–5766.PubMedGoogle Scholar
  22. 21.
    Smith DL, Deng YZ, Zhang ZQ: Probing the non-covalent structure of proteins by amide hydrogen exchange and massspectrometry. J Mass Spectrom 1997;32:135–146.PubMedCrossRefGoogle Scholar
  23. 22.
    Mandell JG, Falick AM, Komives EA: Identification of protein-protein interfaces by decreasedamide proton solvent accessibility. Proc Natl Acad Sci USA 1998;95: 14,705–14,710.CrossRefGoogle Scholar
  24. 23.
    Mandell JG, Falick AM, Komives EA: Measuremen to famide hydrogen exchange by MALDI-TOF mass spectrometry. Anal Chem 1998;70:3987–3995.PubMedCrossRefGoogle Scholar
  25. 24.
    Sahu A, Lambris JD: Complement inhibitors: a resurgent concept in anti-inflammatory therapeutics. Immunopharmacology 2000;49:133–148.PubMedCrossRefGoogle Scholar
  26. 25.
    Sahu A, Lambris JD: Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunological Reviews 2001;180:35–48.PubMedCrossRefGoogle Scholar
  27. 26.
    Sahu A, Kay BK, Lambris JD: Inhibition of human complement by a C3-binding peptide isolated from a phage displayed random peptide library. J Immunol 1996;157: 884–891.PubMedGoogle Scholar
  28. 27.
    Soulika AM, Khan MM, Hattori T, et al.: Inhibition of heparin/protamine complex-induced complement activation by Compstatin in baboons. Clin Immunol 2000;96: 212–221.PubMedCrossRefGoogle Scholar
  29. 28.
    Fiane AE, Mollnes TE, Videm V, et al.: Prolongation of ex vivoperfused pig xenograft survival by the complement inhibitor complstatin. Trans plant Proc 1999;31: 934–935.Google Scholar
  30. 29.
    Fiane AE, Mollnes TE, Videm V, et al.: Compstatin, a peptide inhibitor of C3, prolongs survival of exvivo perfused pig xenografts. Xenotransplantation 1999;6: 52–65.PubMedCrossRefGoogle Scholar
  31. 30.
    Fiane AE, Videm V, Lambris JD, et al.: Modulation of fluid-phase complement activation inhibits hyperacute rejection in a porcineto-human xenograft model. Transplant Proc 2000;32:899–900.PubMedCrossRefGoogle Scholar
  32. 31.
    Nilsson B, Larsson R, Hong J, et al.: Compstatin inhibits complement and cellular activation in whole blood in two models of extracorporeal circulation. Blood 1998;92:1661–1667.PubMedGoogle Scholar
  33. 32.
    Furlong ST, Dutta AS, Coath MM, et al.: O3 activation is inhibited by analogs of compastatin but not by serine protease inhibitors or peptidyl alphaketoheterocycles. Immunopharmacology 2000;48: 199–212.PubMedCrossRefGoogle Scholar
  34. 33.
    Morikis D, Assa-Munt N, Sahu A, et al.: Solution structure of compstatin, a potent complement inhibitor. Protein Science 1998; 7:619–627.PubMedCrossRefGoogle Scholar
  35. 34.
    Klepeis JL, Floudas CA, Morikis D, et al.: Predicting peptide structures using NMR data and deterministic global optimization. J Comput Chem 1999;20: 1344–1370.Google Scholar
  36. 35.
    Morikis, D, Sahu A, Moore WT, et al.: Design, structure, function and application of compstatin in bioactive peptides in drug discovery and design: medicalaspects, 1999; 235–246.Google Scholar
  37. 36.
    Morikis D, Roy M, Sahu A, et al.: The structural basis of compstatin activity examined by structure-function-based design of peptide analogs and NMR. J Biol Chem 2002;277:14,942–14,953.CrossRefGoogle Scholar
  38. 37.
    Sahu A, Soulika AM, Morikis D, et al.: Binding kinetics, structure-activity relationship, and biotrans-formation of the complement inhibitor compastatin. J Immunol 2000;165:2491–2499.PubMedGoogle Scholar
  39. 38.
    Lambris JD, Holers VM (eds): Therapeutic interventions in the complement system. Totowa, NJ. Humana, 2000.Google Scholar
  40. 38a.
    Sahu A, Morikis D, Lambris JD: Compstatin, a peptide inhibitor of complement, exhibits species-specific binding to complement component C 3. Mol Immunol 2003;39:557–566.PubMedCrossRefGoogle Scholar
  41. 39.
    Pennington SR, Wilkins MR, Hochstrasser DF, et al.: Proteome analysis: From protein characterization to biological function. Trends Cell Biol 1997;7:168–173.CrossRefPubMedGoogle Scholar
  42. 40.
    Anderson L, Seilhamer: A comparison of selected mRNA and liver. Electrophoresis 1997;18:533–537.PubMedCrossRefGoogle Scholar
  43. 41.
    Peng JM, Gygi SP: Proteomics: the move to mixtures. J Mass Spectrom 2001;36:1083–1091.PubMedCrossRefGoogle Scholar
  44. 42.
    Mastellos D, Papadimitriou JC, Franchini S, et al.: A novel role of complement: mice deficient in the fifth component of complement (C5) exhibit impaired liver regeneration. J Immunol 2001;166: 2479–2486.PubMedGoogle Scholar
  45. 43.
    O'Barr SA, Caguioa J, Gruol D, et al.: Neuronal expression of a functional receptor for the C5a complement activation fragment. J Immunol 2001;166:4154–4162.PubMedGoogle Scholar
  46. 44.
    Sato T, Abe E, Cheng HJ, et al.: The biological roles of the 3rd component of complementinosteoclast formation. Endocrinology 1993; 133:397–404.PubMedCrossRefGoogle Scholar
  47. 45.
    Kotwal GJ, Moss B: Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. Nature 1988;335: 176–178.PubMedCrossRefGoogle Scholar
  48. 46.
    Kotwal GJ, Isaacs SN, McKenzie R, et al.: Inhibition of the complement cascade by the major secretory protein of vaccinia virus. Science 1990;250:827–830.PubMedCrossRefGoogle Scholar
  49. 47.
    Mckenzie R, Kotwal GJ, Moss B, et al.: Regulation of complement activity by vaccinia virus complement-control protein. J Infect Dis 1992;166:1245–1250.PubMedGoogle Scholar
  50. 48.
    Sahu A, Isaacs SN, Soulika AM, et al.: Interaction of vaccinia virus complement control protein with human comple ment proteins: Factor I-mediated degradation of C3b to iC3b(1) inactivates the alternative complement pathway. J Immunol 1998;160:5596–5604.PubMedGoogle Scholar
  51. 49.
    Saurias MF, Funchini S, Canziani G, et al.: Kinetic analysis of the interactions of complement receptor 2 (CR2, CD21) with its ligands C3d, iC3b, and the EBV glycoprotein gp350/220. J Immunol 2001;167:1490–1499.Google Scholar
  52. 50.
    Isaacs SF, Kotwal GJ, Moss B: Vaccinia virus complement-control protein prewents antibody-dependent complement-enhanced neutralization of infectivity and contributes to viruence. Proc Natl Acad Sci USA 1982;89:628–632.CrossRefGoogle Scholar
  53. 51.
    Albrecht JC, Fleckernstein B: Complement regulatory proteins of herpesivirussaimiri. 1995;127–145.Google Scholar
  54. 52.
    Spear PG: Antigenic structure of herpes simplex viruses. 1985; 425–446.Google Scholar
  55. 53.
    McNeamey TA, Odell C, Holers VM, et al.: Herpes simplex virus glycoproteins gC-1 and gC-2 bind to the third component of complement and provide protection against complement mediated neutralization of viral infectivity. J Exp Med 1987;166:1525–1535.CrossRefGoogle Scholar
  56. 54.
    Friedman HM, Wang L, Fishman NO, et al.: Immune evasion properties of herpes simplex virus type 1 glycoprotein gC. J Virol 1996;70:4253–4260.PubMedGoogle Scholar
  57. 55.
    Johnson DC, Spear PG: O-linked oligosaccharides are acquired by herpes simplex virus glycoproteins in the Golgi apparatus. Cell 1983;32:987–997.PubMedCrossRefGoogle Scholar
  58. 56.
    Tal-Singer R, et al.: Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules. J Virol 1995;69: 4471–4483.PubMedGoogle Scholar
  59. 57.
    Fries LF, Friedman HM, Cohen GH, et al.: Glycoprotein C of herpes simplex virus 1 is an inhibitor of the complement cascade. J Immunol 1986;137: 1636–1641.PubMedGoogle Scholar
  60. 58.
    Hung SL, Peng C, Kostavasili I, et al.: The interaction of glycoprotein C of herpes simplex virus types 1 and 2 with the altemative complement pathway. Virology 1994;203:299–312.PubMedCrossRefGoogle Scholar
  61. 59.
    Kostavasil I, Sahu A, Friedman HM, et al.: Mechanism of complement inactivation by glycoprotein C of herpes simplex virus. J Immunol 1997;158:1763–1771.Google Scholar
  62. 60.
    Friedman HM, Wang L, Pangburn MK, et al.: Novel mechanism of antibody-independent complement neutralization of herpes simplex virus type 1. J Immunol 2000; 165:4528–4536.PubMedGoogle Scholar
  63. 61.
    Lubinski JM, Wang L, Soulika AM, et al.: Herpes simplex virus type 1 glycoprotein gC mediates immune evasion in vivo. J Virol 1998;72:8257–8263.PubMedGoogle Scholar
  64. 62.
    Lubinski J, Wang L, Mastellos D, et al.: In vivo role of complement-interacting domains of herpessimplex virus type 1 glycoprotein gC. J Exp Med 1999;190:1637–1646.PubMedCrossRefGoogle Scholar
  65. 63.
    Cooper NR: Complement evasion strategies of microorganisms. Immunol Today 1991;12:327–331.PubMedCrossRefGoogle Scholar
  66. 64.
    Nemerow GR, Houghten RA, Moore MD, et al.: Identification of an epitope in the major envelope protein of Epstein-Barr virus that mediates viral binding to the B lymphocyte EBV receptor (CR2). Cell 1989;56:369–377.PubMedCrossRefGoogle Scholar
  67. 65.
    Tsoukas CD, Lambris JD: Expression of EBV/C3d receptors on T cells: biological significance. Immunol Today 1993;14:56–59.PubMedCrossRefGoogle Scholar
  68. 66.
    Ross GD, Newman SL, Lambris JD, et al.: Generation of three different fragments of bound C3 with purified factor 1 or serum. II. Location of binding sites in the C3 fragments for factors B and H, complement receptors, and bovine conglutinin. J Exp Med 1983;158:334–352.PubMedCrossRefGoogle Scholar
  69. 67.
    Kalli KR, Ahearn JM, Fearon DT: Interaction of iC3b with recombinant isotypic and chimeric forms of CR2. J Immunol 1991;147: 590–594.PubMedGoogle Scholar
  70. 68.
    Hedrick JA, Lao Z, Wang Y, et al.: Isolation and characterization of Epstein-Barr Virus receptor from a T cell line (HSB2). J Immunol 1994;153:4418–4426.PubMedGoogle Scholar
  71. 69.
    Bergelson JM, Chan M, Solomon KR, et al.: Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchoredcomplement regulatory protein, is a receptor for several echoviruses. Proc Natl Acad Sci USA 1994; 91:6245–6249.PubMedCrossRefGoogle Scholar
  72. 70.
    Manchester M, Liszewski MK, Atkinson JP, et al.: Multiple isoforms of CD46 (membrane cofactor protein) serve as receptors for measles virus. Proc Natl Acad Sci USA 1994;91:2161–2165.PubMedCrossRefGoogle Scholar
  73. 71.
    Smith LC, Azumi K, Nonaka M: Complement systems in invertebrates. The ancient talternative and lectin pathways. Immunopharmacology 1999;42:107–120.PubMedCrossRefGoogle Scholar
  74. 72.
    Day NKB, Gewurz H, Johansen R, et al.: Complement and complement-like activity in lower vertebrates and invertebrates. J Exp Med 1970;132:941–950.PubMedCrossRefGoogle Scholar
  75. 73.
    Al-Sharif WZ, Sumyer JO, Lambris JD, et al.: Sea urchin coelomocytes specifically express a homoloque of the complement component C 3. J Immunol 1997; 160: 2983–2997.Google Scholar
  76. 74.
    Sunyer JO, Zarkadis IK, Sahu A, et al.: Multiple forms of complement C3 in trout, that differerin binding to complement tactivators. Proc Natl Acad Sci USA 1996;93: 8546–8551.PubMedCrossRefGoogle Scholar
  77. 75.
    Sunyer JO, Tort L, Lambris JD: Structural C3 diversity in fish—Characterization of five forms of C3 in the diploid fish Spansaurata. J Immunol 1997;158:2813–2821.PubMedGoogle Scholar
  78. 76.
    Marino R, Kimura Ym De Santis R, et al.: Complement in urochordates: cloning and characterization of two C3-like genes in the ascidian C iona intestinalis. Immunogenetics 2002;53:1055–1064.PubMedCrossRefGoogle Scholar
  79. 77.
    Smith SL: Shark complement: an assessment. Immunol Rev 1998; 166:67–78.PubMedCrossRefGoogle Scholar
  80. 78.
    Suzuki MM, Satoh N, Nonaka M: C6-like and c3-like molecules from the cephalochordate, amphioxus, suggest a cytolytic complement system invertebrates. J Mol Evol 2002;54:671–679.PubMedCrossRefGoogle Scholar
  81. 79.
    Franchini S, Zarkadis IK, Syfroera G, et al.: Cloning and purification of the rainbow trout fifth component of compoement (C5). Dev Comp Immunol 2001;25: 419–430.PubMedCrossRefGoogle Scholar
  82. 80.
    Miyazawa S, Azumi K, Nonaka M: (2001) Cloning and characterization of integrinal phasubunits from the solitary ascidian, halocynthia roretzi. J Immunol 2001;166: 1710–1715.PubMedGoogle Scholar
  83. 81.
    Sunyer JO, Zarkadis I, Sarrias MR, et al.: Cloning, structure, and function of two rainbow trout Bf molecules. Immunol 1998;161: 4106–4114.Google Scholar
  84. 82.
    Alsenz J, Becherer JD, Nilsson B, et al.: Structural and functional analysis of C3 using monoclonal antibodies. Curr Top Microbiol Immunol 1989;153:235–248.Google Scholar
  85. 83.
    Kenaper C, Zipfel PF, Gigli I: The complement cofactor protein (SBP1) from the barred sand bass Paralabrax nebulifer) mediates overlapping regulatory activities of both human C4b binding protein and factor H. J Biol Chem 1998;273:19,398–19,404.Google Scholar
  86. 84.
    Fausto N, Webber EM: Liver Regeneration, in The Liver: Biology and Pathobiology (Arias IM, Boyer JL, Fausto N, et al., eds.). 3rd, ed. Raven Press, New York, 1994;1059–1084.Google Scholar
  87. 85.
    Cressman DE, Greenbaum LE, DeAngelis RA, et al.: Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 1996;274:1379–1383.PubMedCrossRefGoogle Scholar
  88. 86.
    Yamada Y, Kirillova I, Peschon JJ, et al.: Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor encrosis factor receptor. Proc Natl Acad Sci USA 1997;94:1441–1446.PubMedCrossRefGoogle Scholar
  89. 87.
    Taub R, Greenbaum LE, Peng Y: Transcriptional regulatory signals define cytokine-dependent and-independent pathways in liver regeneration. Semin Liver Dis 1999;19:117–127.PubMedCrossRefGoogle Scholar
  90. 88.
    Finch AM, Wong AK, Packowski NJ, et al.: Low-molecular-weight peptidic and cyclic antagonists of the receptor for the complement factor C5a. J Med Chem 1999;42: 1965–1974.PubMedCrossRefGoogle Scholar
  91. 89.
    Brockes JP: Amphibian limb regeneration: rebuilding a complex structure. Science 1997;276: 81–87.PubMedCrossRefGoogle Scholar
  92. 90.
    Tsonis PA: Amphibian limb regeneration In vivo. 1991;5:541–550.PubMedGoogle Scholar
  93. 91.
    Tsonis PA: Regeneration in vereebrates. Dev Biol 2000;221: 273–284.PubMedCrossRefGoogle Scholar
  94. 92.
    Del Rio-Tsonis K, Tsonis PA, Zarkadis IK, et al.: Expression of the third component of complement, C3, in regeneting limb blastema cells of urodeles. J Immunol 1998;161:6819–6824.PubMedGoogle Scholar
  95. 93.
    Sun X, Funk CD, Deng C, et al.: Role of decay-accelerating factor in regulating complement activation on the erythrocyte surface as revealed by gene targeting. Proc Natl Acad Sci USA 1999;96: 628–633.PubMedCrossRefGoogle Scholar
  96. 94.
    Petrenko O, Beavis A, Klaine M, et al.: The molecular characterization of the fetal stem cell marker AA4. Immunity 1999;10:691–700.PubMedCrossRefGoogle Scholar
  97. 95.
    Dean YD, McGreal EP, Gasque P.: Endothelial cells, megakaryoblasts, paltelets and alveolar epithelial cells express abundant levels of the mouse AA4 antigen, a C-type lectin-like receptor involved in homing activities and innate immune host defense. Eur J Immunol 2001;31:1370–1381.PubMedCrossRefGoogle Scholar
  98. 96.
    Zou YR, Kottmann AH, Kuroda M, et al.: Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998;393: 595–599.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Dimitrios Mastellos
    • 1
  • Dimitrios Morikis
    • 2
  • Stuart N. Isaacs
    • 3
  • M. Claire Holland
    • 1
  • Cristoph W. Strey
    • 1
  • John D. Lambris
    • 1
  1. 1.Protein Chemistry Laboratory, Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphia
  2. 2.Department of Chemical and Environmental EngineeringUniversity of CaliforiaRiverside
  3. 3.Division of Infectious Diseases, Department of MedicineUniversity of PennsylvaniaPhiladelphia

Personalised recommendations