Immunologic Research

, Volume 27, Issue 2–3, pp 309–329 | Cite as

Role of the BCR complex in B cell development, activation, and leukemic transformation

  • Susan R. Rheingold
  • Valerie I. Brown
  • Junjie Fang
  • Jenny M. Kim
  • Stephan A. Grupp


A primary focus of signal transduction in B cells, from the pre-B cell to the mature B cell, is the B cell receptor complex. Here we describe work demonstrating the importance of signaling via the pre-B cell receptor complex (pre-BCR) to the pre-B cell transition, the central checkpoint in B-cell development. We have shown tht pre-BCR complex components Igα and Igβ are critical to allowing the pre-B cell to move through thistransition, but may not be required for allelic exclusion. Pre-BCR expression also directly affects the response of leukemic cells to steroid treatment, suggesting that signals initiated by the pre-BCR complex may present therapeutic targetsin acute leukemia. Additionally, interleukin-7 may also modulate the response of leukemic cells arising from early B-cell stages to treatment. This observation has lead directly to proposals to test drugs which may antagonize early B-cell growth signals, such as rapamycin, in acute lymphoid leukemia.

Key Words

B cell receptor complex Pre-B cell receptor Cytoplasmic μ B-cell development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hombach J, Lottspeich F, Reth M: Identification of the genes encoding the Ig-Ma and Ig-b components of the IgM antigen receptor complex by amino-terminal sequencing. Eur J Immunol 1990;20: 2795–2799.PubMedCrossRefGoogle Scholar
  2. 2.
    Hombach J, Tsubata T, Leclercq L, Stappert H, Reth M: Molecular components of the B-cell antigen receptor complex of the IgM class. Nature 1990;343:760–762.PubMedCrossRefGoogle Scholar
  3. 3.
    Venkitaraman AR, Williams GT, Dariavach P, Neuberger MS: The B cell antigen receptor of the five immunoglobulin classes. Nature 1991;352:777–781.PubMedCrossRefGoogle Scholar
  4. 4.
    Sakaguchi N, Kashiwamura SI, Kinoto M, Thalmann P, Melchers F: B lymphocyte lineage restricted expression of mb-1, a gene with CD3-like structural properties. EMBO 1988;7:3457–3464.Google Scholar
  5. 5.
    Kashiwamura S-I, Koyama T, Matsuo T, Steinmetz M, Komoto M, Sakaguchi N: Structure of the murinemb-1 gene encoding putative sIgM-associated molecule. J Immunol 1990;145:337–343.PubMedGoogle Scholar
  6. 6.
    Hermanson GG, Eisenberg D, Kincade PW, Wall R: A member of the immunoglobulin gene superfamily exclusively expressed on B-lineage cells. Proc Natl Acad Sci USA 1988;85:6890–6894.PubMedCrossRefGoogle Scholar
  7. 7.
    van Noesel CJM, Borst J, DeVries EFR, van Lier RAW: Identification of two distinct phosphoproteins as components of the human B cell antigen receptor complex. Eur J Immunol 1990;20:2789–2793.PubMedCrossRefGoogle Scholar
  8. 8.
    van Noesel CJM, Brouns GS, van Schyndel GMW, Bende RJ, Mason DY, Borst J, van Lier RAW: Comparison of human B cell antigen receptor complexes: membrane expressed forms of immunoglobulin IgM, IgD, and IgG are associated with structurally related heterodimers. J Exp Med 1992;175: 1511–1519.PubMedCrossRefGoogle Scholar
  9. 9.
    Brouns GS, de Vries E, van Noesel CJ.D.Y.M., van Lier RA, Borst J: The structure of the mu/pseudo light chain complex on human pre-B cells is consistent with a function in signal transduction. Eur J Immunol 1993;23:1088–1097.PubMedCrossRefGoogle Scholar
  10. 10.
    Burkhardt AL, Costa T, Misulovin Z, Stealy B, Bolen JB, Nussensweig MC: Igx and Igb are functionally homologous to the signaling proteins of the T-cell receptor. Mol Cell Biol 1994;14:1095–1103.PubMedGoogle Scholar
  11. 11.
    Reth M, Hombach J, Wienands J, Campbell KS, Chien N, Justement LB, Cambier JC: The B-cell antigen receptor complex. Immunol Today 1991;12:196–205.PubMedCrossRefGoogle Scholar
  12. 12.
    Wienands J, Hombach J, Radbruch A, Riesterer C, Reth M: Molecular components of the B cell antigen receptor complex of class IgD differ partly from those of IgM. Embo J 1990;9:449–455.PubMedGoogle Scholar
  13. 13.
    Reth M: The B-cell antigen receptor complex and co-receptors. Immunol Today 1995;16:310–313.PubMedCrossRefGoogle Scholar
  14. 14.
    Reth N: B cell antigen receptors. Curr Opin Immunol 1994;6:3–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Reth M: Antigen receptors on B lymphocytes. Ann Rev Immunol 1992;10:97–121.CrossRefGoogle Scholar
  16. 16.
    Reth M: Antigen receptor tail clue. Nature 1989;338:383–384.PubMedCrossRefGoogle Scholar
  17. 17.
    Terashima M, Kim KM, Adachi T, Nielsen PJ, Reth M, Kohler G, Lamers MC: The IgM antigen receptor of B lymphocytes is associated with prohibitin and a prohibitin-related protein. Embo J 1994;13:3782–3792.PubMedGoogle Scholar
  18. 18.
    De Franco AL: Transmembrane signaling by antigen receptors of B and T lymphocytes. Curr Opin Cell Biol 1995;7:163–175.CrossRefGoogle Scholar
  19. 19.
    Matsuuchi L, Gold MR, Travis A, Grosschedl R, De Franco AL, Kelly RB: The membrane IgM-associated proteins MB-1 and Ig-B are sufficient to promote surface expression of a partially functional B-cell antigen receptor in a nonlymphoid cell line. Proc Natl Acad Sci USA 1992;89:3404–3408.PubMedCrossRefGoogle Scholar
  20. 20.
    De Franco AL: Structure and function of the B cell antigen receptor. Ann Rev Cell Biol 1993;9: 377–410.Google Scholar
  21. 21.
    Melchers F, Andersson J: B cell activation: three steps and their variations. Cell 1984;37:713–720.PubMedCrossRefGoogle Scholar
  22. 22.
    Campbell KS, Cambier JC: B lymphocyte antigen receptors (mIg) are non-covalently associated with a disulfide linked, inducibly phosphorylated glycoprotein complex. EMBO J 1990;9:441–448.PubMedGoogle Scholar
  23. 23.
    Campbell KS, Hager EJ, Friedrich RJ, Cambier JC: IgM antigen receptor complex contains phosphoprotein products of B29 and mb-1 genes. Proc Natl Acad Sci USA 1991;88:3982–3986.PubMedCrossRefGoogle Scholar
  24. 24.
    Pleiman CM, D'Ambrosio D, Cambier JC: The B-cell antigen receptor complex: structure and signal transduction. Immunol Today 1994;15:393–399.PubMedCrossRefGoogle Scholar
  25. 25.
    Dammer D, Leder P: Role of an RNA cleavage/poly (A) addition site in the production of membranebound and secreted IgM mRNA. Proc Natl Acad Sci USA 1985;82: 8658–8662.CrossRefGoogle Scholar
  26. 26.
    Shaw AC, Mitchell RN, Weaver YK, Campos-Torres J, Abbas AK, Leder P: Mutations of immunoglobulin transmembrane and cytoplasmic domains: effects on intracellular signaling and antigen presentation. Cell 1990;63:381–392.PubMedCrossRefGoogle Scholar
  27. 27.
    Williams GT, Venkitaraman AR, Gilmore DJ, Neuberger MS: The sequence of the μ transmembrane segment determines the tissue specificity of the transport of immunoglobulin M to the cell surface. J Exp Med 1990;171: 947–952.PubMedCrossRefGoogle Scholar
  28. 28.
    Grupp SA, Campbell K, Mitchell RN, Cambier JC, Abbas AK: Signaling-defective mutants of the B lymphocyte antigen receptor fail to associate with Ig-alpha and Ig-beta/gamma. J Biol Chem 1993; 268:25,776–25,779.Google Scholar
  29. 29.
    Mitchell RN, Shaw AC, Weaver YK, Leder P, Abbas AK: Cytoplasmic tail deletion converts membrane immunoglobulin to a phosphatidy linositol-linked form lacking signaling and efficient antigen internalization functions. J Biol Chem 1991;266:8856–8860.PubMedGoogle Scholar
  30. 30.
    Mitchell RM, Barnes KA, Grupp SA, Sanchez M, Misulovin Z, Nussenzweig MC, Abbas AK: Intracellular targe ting of antigens internalized by membrane immunoglobulin in B lymphocytes. J Exp Med 1995;181:1705–1714.PubMedCrossRefGoogle Scholar
  31. 31.
    Cambier JC, Ransom JT: Molecular mechanisms of transmembrane signaling in B lymphocytes. Ann Rev Immunol 1987;5:175–190.CrossRefGoogle Scholar
  32. 32.
    Clark MR, Campbell KS, Kazlauskas A, et al: The B cell antigen receptor complex: association of Ig-alpha and Ig-beta with distinct cytoplasmic effectors. Science 1992;258:123–126.PubMedCrossRefGoogle Scholar
  33. 33.
    Harris LK, Cambier JC: B lymphocyte activation. Transmembrane signal transduction by membrane immunoglobulin in isolated cell membranes. J Immunol 1987;139:963–970.PubMedGoogle Scholar
  34. 34.
    Kim KM, Alber G, Weiser P, Reth M: Differential signaling through the 1g-alpha and 1g-beta components of the B cell antigen receptor. Eur J Immunol 1993;23:911–916.PubMedCrossRefGoogle Scholar
  35. 35.
    Flaswinkel H, Reth M: Dual role of the tyrosine activation motif of the lgalpha protein during signal transduction via the B cell antigen receptor. EMBO J 1994;13:83–89PubMedGoogle Scholar
  36. 36.
    Sanchez M, Misulovin Z, Burkhardt AL, Mahajan S, Costa T, Frazake R, Bolen JB, Nussenzweig M: Signal transduction by immunoglobulin ismediated throughlgx and 1gB. J Exp Med 1993;178:1049–1055.PubMedCrossRefGoogle Scholar
  37. 37.
    Kim KM, Alber G, Weiser P, Reth M: Signalling function of the B-cell antigen receptors. Immunol Rev 1993;132:125–146.PubMedCrossRefGoogle Scholar
  38. 38.
    Costa TE, Franke RR, Sanchez M, Misulovin Z, Nussenzweig MC: Functional reconstitution of an immunoglobulin antigen receptor in T cells. J Exp Med 1992;175:1669–1676.PubMedCrossRefGoogle Scholar
  39. 39.
    Williams GT, Peaker CJ, Patel KJ, Neuberger MS: The alpha/beta sheath and its cytoplasmic tyrosines are required for signaling by the B-cell antigen receptor but not for capping or for serine/threonine-kinase recruitment. Proc Natl Acad Sci USA 1994;91:474–478.PubMedCrossRefGoogle Scholar
  40. 40.
    Hartwig JH, Jugloff LS, De Groot NJ, Grupp SA, Jongstra-Bilen J: The ligand-induced membrane 1gM association with the cytoskeletal matrix of B cells is not mediated through the Igalpha beta heterodimer. J Immunol 1995;155:3769–3779.PubMedGoogle Scholar
  41. 41.
    Barnes KA, Mitchell RN: Detection of functional class II-associated antigen: role of a low density endosomal compartment in antigen processing. J Exp Med 1995;181:1715–1727.PubMedCrossRefGoogle Scholar
  42. 42.
    Patel KJ, Neuberger MS: Antigen presentation by the B cell antigen receptor is driven by the x/b sheath and occurs independently of its cytoplasmic tyrosines. Cell 1993;74:939–946.PubMedCrossRefGoogle Scholar
  43. 43.
    LeBien TW: Fates of human B-cell precursors. Blood 2000;96:9–23.PubMedGoogle Scholar
  44. 44.
    Galy A, Travis M, Cen D, Chen B: Human T, B, naturalkiller, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 1995;3: 459–473.PubMedCrossRefGoogle Scholar
  45. 45.
    Davi F, Faili A, Gritti C, Blanc C, Laurent C, Sutton L, Schmitt C, Merle-Beral H: Early onset of immunoglobulin heavy chaingene rearangements in normal human bone marrow CD34+cells. Blood 1997;90:4014–4021.PubMedGoogle Scholar
  46. 46.
    Dworzak MN, Fritsch G, Froschl G, Printz D, Gadner H: Fourcolor flow cytometric investigation of terminal deoxynucleotidyl transferase-positive lymphoid precursors in pediatric bone marrow: CD79a expression precedes CD19 in early B-cell ontogeny. Blood 1998;92:3203–3209.PubMedGoogle Scholar
  47. 47.
    Loffert D, Schaal S, Ehlich A, Hardy RR, Zou YR, Muller W, Rajewsky K: Early B cell development in the mouse: insights from mutations in troduced by gene targeting. Immunol Rev 1994;137: 135–153.PubMedCrossRefGoogle Scholar
  48. 48.
    Hardy RR, Carmack CE, Shinton SA Kemp JD, Hayakawa K: Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J Exp Med 1991;173:1213–1225.PubMedCrossRefGoogle Scholar
  49. 49.
    Spanopoulou E, Roman CAJ, Corcoran LM, et al.: Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes Dev 1994;8:1030–1042.PubMedGoogle Scholar
  50. 50.
    Ehlich A, Schaal S, Gu H, Kitamura D, Muller W, Rajewsky K: Immunoglobulin heavy and light chain genes rearrange independently atearly stages of B cell development. Cell 1993;72:695–704.PubMedCrossRefGoogle Scholar
  51. 51.
    Melchers F, Haasner D, Grawunder U, Kalberer C, Karasuyama H, Winkler T, Rolink AG: Roles of 1gH and L chains and of surro gate H and L chains in the development of cells of the B lymphocyte lineage. Ann Rev Immunol 1994;12:209–225.CrossRefGoogle Scholar
  52. 52.
    Karasuyama H, Rolink A, Melchers F: A complex of glycoproteins is associated with VpreB/lambda 5 surrogate light chain on the surface of μ heavy chain-negative early precursor B cell lines. J Exp Med 1993;178:469–478.PubMedCrossRefGoogle Scholar
  53. 53.
    Karasuyama H, Rolink A, Shinkai Y, Young F, Alt FW, Melchers F: The expression of V pre-B/lambda 5 surrogate light chain in early bone marrow precursor B cells of normal and B cell-deficient mutant mice. Cell 1994;77:133–143.PubMedCrossRefGoogle Scholar
  54. 54.
    Kitamura D, Rajewsky K: Targeted disruption of muchain membrane exon causes loss of heavy-chain allelic exclusion. Nature 1992;356:154–156.PubMedCrossRefGoogle Scholar
  55. 55.
    lglesias A, Lamers M, Kohler G: Expression of immunoglobulin deltachain causes allelic exclusion in transgenic mice. Nature 1987;330:482–484.CrossRefGoogle Scholar
  56. 56.
    Cronin FE, Jiang M, Abbas AK, Grupp SA: Role of muheavy chain in B cell development. I. Blocked B cell maturation but complete allelic exclusion in the absence of Ig alpha/beta. J Immunol 1998; 161:252–259.PubMedGoogle Scholar
  57. 57.
    Nussenzweig MC, Shaw AC, Sinn E, Danner DB, Holmes KL, Morse HC 3rd, Leder P: Allelic exclusion in transgenic mice that express the membrane form of immunoglobulin mu. Science 1987;236:816–819.PubMedCrossRefGoogle Scholar
  58. 58.
    Papavasiliou F, Misulovin Z, Suh H, Nussenzweig MC: The role of Igβ in precursor B cell transition and allelic exclusion. Science 1995;268:408–411.PubMedCrossRefGoogle Scholar
  59. 59.
    Xu S, Wong SC, Lam KP: Cutting edge: B cell linker protein is dispensable for the allelic exclusion of immunoglobulin heavy chain locus but required for the persistence of CD5+B cells. J Immunol 2000;165:4153–4157.PubMedGoogle Scholar
  60. 60.
    Papavasiliou F, Jankovic M, Suh H, Nussenzweig MC: The cytoplasmic domains of immunoglobulin (Ig) α and Ig β can independently induce the precursor B cell transition and allelic exclusion. J Exp Med 1995;182:1389–1394.PubMedCrossRefGoogle Scholar
  61. 61.
    Papavasiliou F, Jankovic M, Nussenzweig MC: Surrogate or conventional light chains are required for membrane immunoglobulin μ to activate the precursor B cell transition. J Exp Med 1996;184:2025–2030.PubMedCrossRefGoogle Scholar
  62. 62.
    Kitamura D, Kudo A, Schaal S, Muller W, Melchers F, Rajewsky K: Acritical role of lambda 5 protein in B cell development. Cell 1992;69:823–831.PubMedCrossRefGoogle Scholar
  63. 63.
    Rolink A, Karasuyama H, Grawunder U, Haasner D, Kudo A, Melchers F: B cell development in mice with a defective lambda 5 gene. Eur J Immunol 1993;23:1284–1288.PubMedCrossRefGoogle Scholar
  64. 64.
    Rolink A, Melchers F: B lymphopoiesis in the mouse. Adv Immunol 1993;53:123–156.PubMedCrossRefGoogle Scholar
  65. 65.
    Shimizu T, Mundt C, Licence S, Melchers F, Martensson IL: VpreBI/VpreB 2/lambda 5 triple-deficient mice show impaired B cell development but functional allelic exclusion of the IgH locus. J Immunol 2002;168:6286–6293.PubMedGoogle Scholar
  66. 66.
    Kitamura D, Roes J, Kuhn R, Rajewsky K: A B cell deficient mouse generated through targeted disruption of the membrane exon of the immunoglobulin muchain. Nature 1991;350:423–426.PubMedCrossRefGoogle Scholar
  67. 67.
    Rolink A, Karasuyama H, Haasner D, Grawunder U, Martensson IL, Kudo A, Melchers F: Two pathways of B-lymphocyte development in mouse bone marrow and the roles of surrogate L chain in this development. Immunol Rev 1994;137:185–201.PubMedCrossRefGoogle Scholar
  68. 68.
    Chen J, Trounstine M, Alt FW, Young F, Kurahara C, Loring JF, Huszar D: Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int Immunol 1993;5:647–656.PubMedCrossRefGoogle Scholar
  69. 69.
    Yel L, Minegishi Y, Coustan-Smith E, Buckley RH, Trubel H, Pachman LM, Kitchingman GR, Campana D, Rohrer J, Conley ME: Mutations in them heavy-chain gene in patients with agamma-globulinemia. N Engl J Med 1996;335:1486–1493.PubMedCrossRefGoogle Scholar
  70. 70.
    Bykowsky MJ, Haire RN, Ohta Y, et al.: Discordant phenotype insiblings with X-linked agammaglobulinemia. Am J Hum Genet 1996; 58:477–483.PubMedGoogle Scholar
  71. 71.
    Tsukada S, Saffran DC, Rawlings DJ, et al.: Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 1993;72:279–290.PubMedCrossRefGoogle Scholar
  72. 72.
    Tzeng SR, Pai, MT, Lung FD, et al. Stability and peptide binding specificity of Btk SH2 domain: molecular basis for X-linkedagammaglobulinemia Protein Sci 2000;9:2377–2385.PubMedCrossRefGoogle Scholar
  73. 73.
    Nomura K, Kanegane H, Karasyuama H, et al.: Genetic defect in human X-linked agammaglobilinemia impedes a maturational evolution of pro-B cells into alater stage of pre-B cells in the B-cell differentiation pathway. Blood 2000;96:610–617.PubMedGoogle Scholar
  74. 74.
    Thomas J, Sideras P, Vorechovsky I, Smith CIE, Chapman V, Paul WE: A missense mutation in the X-linked agammaglobulin gene colocalizes with the mouse X-linked immunodeficiency gene. Science 1993;261:355–358.PubMedCrossRefGoogle Scholar
  75. 75.
    Khan WN, Alt FW, Gerstein RM, et al.: Defective B cell development and function in btk-deficient mice. Immunity 1995;3:283–299.PubMedCrossRefGoogle Scholar
  76. 76.
    Kerner JD, Appleby MW, Mohr RN, et al.: Impaired expansion of mouse B cell progenitors lacking Btk. Immunity 1995;3:301–312.PubMedCrossRefGoogle Scholar
  77. 77.
    Kornfeld SJ, Good RA, Litman GW: Atypical X-linked agamma-globulinemia. N Engl J Med 1994;331:949–951.PubMedCrossRefGoogle Scholar
  78. 78.
    Gong S, Nussenzweig M: Regulation of an early developmental checkpoint in the B cell pathway by IgB. Science 1996;272:411–414.PubMedCrossRefGoogle Scholar
  79. 79.
    Torres RM, Flaswinkel H, Reth M, Rajewsky K: Aberrant B cell development and immune response in mice with a compromised BCR complex. Science 1996;272:1804–1808.PubMedCrossRefGoogle Scholar
  80. 80.
    Minegishi Y, Coustan-Smith E, Rapalus L, Ersoy F, Campana D, Conley ME: Mutations in Igalpha (CD79a) resultin a complete block in B-cell development. J Clin Invest 1999;104:1115–1121.PubMedGoogle Scholar
  81. 81.
    Minegishi Y, Rohrer J, Conley ME: Recent progress in the diagnosis and treatment of patients with defects in early B-cell development. Curr Opin Pediatr 1999;11:528–532.PubMedCrossRefGoogle Scholar
  82. 82.
    Melchers F, Karasuyama H, Haasner D, Bauer S, Kudo A, Sakaguchi N, Jameson B, Rolink A: The surrogate light chain in B-cell development. Immunol Today 1993;14:60–68.PubMedCrossRefGoogle Scholar
  83. 83.
    Marshall AJ, Wu GE, Paige CJ: Frequency, of VH81x usage during B cell development. J Immunol 1996;156:2077–2084.PubMedGoogle Scholar
  84. 84.
    Gold MR, Matsuuchi L, Kelly RB, DeFranco AL: tyrosine phosphorylation of components of the B-cell antigen receptors following receptor crosslinking. Proc Natl Acad Sci USA 1991;88:3436–3440.PubMedCrossRefGoogle Scholar
  85. 85.
    Gold MR, Law DA, DeFranco AL: Stimulation of protein tyrosine phosphorylation by the B-lymphocyte antigen receptor. Nature 1990;345:810–813.PubMedCrossRefGoogle Scholar
  86. 86.
    Pui CH, Evans WE: Acute lymphoblastic leukemia. N Engl J Med 1998;339:605–615.PubMedCrossRefGoogle Scholar
  87. 87.
    Pui CH: Recent advances in the biology and treatment of childhood acutelymphoblastic leukemia. Curr Opin Hematol 1998;5:292–301PubMedCrossRefGoogle Scholar
  88. 88.
    Tsubata K: Molecular mechanisms for apoptosis induced by signaling through the B cell antigen receptor. Intern Rev Immunol 2001;20:791–803.Google Scholar
  89. 89.
    Dordelmann M, Reiter A, Borkhardt A, et al.: Prednisoneresponse is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia, [see comments]. Blood 1999;94:1209–1217.PubMedGoogle Scholar
  90. 90.
    Kim JM, Fang J, Rheingold S, Aplenc R, Wasseman R, Grupp SA: Cytoplasmic heavy chain confers sensitivity to dexamethasone-induced apoptosis in early B-lineage acute lymphoblastic leukemia. Cancer Res 2002;62:4212–4216.PubMedGoogle Scholar
  91. 91.
    Appasamy PM: Biological and clinical implications of interleukin-7 and lymphopoiesis. cytokines, cellular and molecular therapy 1999; 5: 25–39Google Scholar
  92. 92.
    Page TH, Lali FV, Foxwell BMJ: Interleukin-7 activates p56lck and p59fyn, two tyrosin kinases associated with the p90 interleukin-7 recetor in primary human T cells. Eur J Immunol 1995;25: 2956–2960.PubMedCrossRefGoogle Scholar
  93. 93.
    Hofmeister R, Khaled AR, Benbernou N, Rajnovolgyi E, Muegge K, Durum SK: Interleukin-7: physiological roles and mechanisms of action. Cytokine Growth Factor Rev 1999;10:41–60.PubMedCrossRefGoogle Scholar
  94. 94.
    Melchers F, Haasner D, Streb M, Rolink A: B-lymphocyte lineage-committed, IL-7 and stroma cell-reactive progenitors and precursors and their differentiation to B cells. Adv Exp Med Biol 1992; 323:111–117.PubMedGoogle Scholar
  95. 95.
    McNice IK, Langley KE, Zsebo KM: The role of recombinantstem cellfactor in early B cell development. Synergistic interaction with IL-7. J Immunol 1991;146:3785–3790.Google Scholar
  96. 96.
    von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE, Murray R: Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 1995;181:1519–1526.CrossRefGoogle Scholar
  97. 97.
    Lee G, Namen AE, Gillis S, Ellingsworth LR, Kincade PW: Normal B cell precursors responsive to recombinant murine IL-7 activity by transforming growth factor-beta. J Immunol 1989;142:3875–3883.PubMedGoogle Scholar
  98. 98.
    Namen AE, Lupton S, Hjerrild K, et al.: Stimulation of B-cell progenitors by cloned murine interleukin-7. Nature 1988;333:571–573.PubMedCrossRefGoogle Scholar
  99. 99.
    Rolink AG, Winkler T, Melchers F, Andersson J: Precursor B cell-receptor-dependent B cell proliferation and differentiation does not require the bone marrow or fetal liver environment. J Exp Med 2000;191:23–32.PubMedCrossRefGoogle Scholar
  100. 100.
    Stoddart A, Flemming HE, Paige CJ: The role of preBCR, the interleukin-7 receptor, and homotypic interactions during B-cell development. Immunological reviews 2000;175:47–58.PubMedCrossRefGoogle Scholar
  101. 101.
    Saeland S, Duvert V, Pandrau D, Caux C, Durand I, Wrighton N, Wideman J, Lee F, Banchereau J: Interleukin-7 induces the proliferation of normal human B-cell precursors. Blood 1991; 78:2229–2238.PubMedGoogle Scholar
  102. 102.
    Touw I, Pouwels K, van Agthoven T, et al.: Interleukin-7 is a growth factor of precursor B and T acute lymphoblastic leukemia. Blood 1990;75:2097–2101.PubMedGoogle Scholar
  103. 103.
    Barata JT, Cardoso AA, Nadler LM, Boussiotis VA: Interleukin-7 promotes survival and cell cycle progression of T-cell acute lymphoblastic leukemia cells by down-regulating the cyclin-dependent kinase inhibitor p27(kipl1). Blood 2001;98:1524–1531.PubMedCrossRefGoogle Scholar
  104. 104.
    Wei C, Zeff R, Goldschneider I: Murine pro-B cells require IL-7 and its receptor complex to up-regulate IL-7R alpha, terminal deoxynucleotidyltransferase, and cmuexpression. J Immunol 2000; 164:1961–1970.PubMedGoogle Scholar
  105. 105.
    Eder M, Hemmati P, Kalina U, Ottmann OG, Hoelzer D, Lyman SD, Ganser A: Effects of Flt3 ligandand interleukin-7 on in vitro growth of acute lymphoblastic leukemia cells. Exp Hematol 1996; 24:371–377.PubMedGoogle Scholar
  106. 106.
    Shah N, Oseth L, Tran H, Hirsch B, LeBien TW: Clonal variation in the B-lineage acute lymphoblastic leukemia response to multiple cytokines and bone marrow stromal cells. Cancer Res 2001;61:5268–5274.PubMedGoogle Scholar
  107. 107.
    van der Plas DC, Smiers F, Pouwels K, Hoefsloot LH, Lowenberg B, Touw IP: Interleukin-7 signaling in human B cell precursor acute lymphoblastic leukemia cells and murine BAF3 cells involves activation of STAT1 and STAT5 mediated via the interleukin-7 receptor alpha chain. Leukemia 1996;10:1317–1325.PubMedGoogle Scholar
  108. 108.
    Wicker LS, Boltz RC, Matt V, Nichols EA, Peterson LB, Sigal, NH: Suppression of B cell activation by cyclosporin A, FK506 and rapamycin. Eur J Immunol 1990; 20:2277–2283.PubMedCrossRefGoogle Scholar
  109. 109.
    Morris RE: Rapamycin: FK506's fraternal twin or distant cousin? Immunol Today 1991;12:137–140.PubMedGoogle Scholar
  110. 110.
    Majewski M, Korecka M, Kossev P, et al.: The immunosupressive macrolide RAD inhibits growth of human Epstein-Barr virustransformed B lymphocytes in vitro and in vivo: A potential approach to prevention and treatement of postransplant lymphoproliferative disorders. Proc Natl Acad Sci 2000; 97:4285–4290.PubMedCrossRefGoogle Scholar
  111. 111.
    Sakata A, Kuwahara K, Ohmura T, Inui S, Sakaguchi N: Involvement of a rapamycin-sensitive pathway in CD40-mediated activation of murine B cells in vitro. Immunol Lett 1999;68:301–309.PubMedCrossRefGoogle Scholar
  112. 112.
    Nourse J, Firpo E, Flanagan WM, et al.: Interleukin-2-mediated elimination of the p27K ipl cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 1994;372:570–573.PubMedCrossRefGoogle Scholar
  113. 113.
    Ponce-Castaneda MV, Lee MH, Latres E, et al.: p27Kipl: chromosomal mapping to 12p12–12p13.1 and absence of mutations in human tumors. Cancer Res 1995;55: 1211–1214.PubMedGoogle Scholar
  114. 114.
    Barata JT, Cardoso AA, Keenan T, Sallan S, Nadler LM, and Boussiotis VA. Downregulation of p27kip1 by IL-7 is mandatory for induction of bcl-2, promotion of viability and cell cycle progression in T cell acute lymphoblastic leukemia cells. Journal 2000; Issue; 96: abstract # 1989.Google Scholar
  115. 115.
    Pagano M, Tam SW, Theodoras AM, et al.: Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 1995;269:682–685.PubMedCrossRefGoogle Scholar
  116. 116.
    Wasserman R, Zeng, XX, Hardy RR. The evolution of B precursor leukemia in the Emu-ret mouse. Blood 1998;92:273–282.PubMedGoogle Scholar
  117. 117.
    Wasserman R, Li YS, Hardy RR: Differential expression of the blk and ret tyrosine kinases during B lineage development is dependent on Ig rearrangement. J Immunol 1995;155:644.PubMedGoogle Scholar
  118. 118.
    Iwamoto T, Pu M, Ito M, et al.: Preferential development of pre-B lymphomas with drastically down-regulated N-myc in the Emu-Ret transgenic mice. Eur J Immunol 1991;21:1809–1814.PubMedCrossRefGoogle Scholar
  119. 119.
    Era T, Nishikawa S, Sudo T, et al. How B-precursor cells are driven to cycle. Immunol Rev 1994;137: 35–51.PubMedCrossRefGoogle Scholar
  120. 120.
    Hombach J, Sablitzky F, Rajewsky K, Reth M: Transfected plasma-cytoma cells do not transport the membrane form of IgM to the cell surface. J Exp Med 1988;167:652–657.PubMedCrossRefGoogle Scholar
  121. 121.
    Grupp SA, Mitchell RN, Schreiber KL, McKean DJ, Abbas AK: Molecular mechanisms that control expression of the B lymphocyte antigen receptor complex. J Exp Med 1995;181:161–168.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Susan R. Rheingold
    • 1
    • 2
  • Valerie I. Brown
    • 1
    • 2
  • Junjie Fang
    • 1
  • Jenny M. Kim
    • 3
  • Stephan A. Grupp
    • 1
    • 2
  1. 1.Division of OncologyChildren's Hospital of PhiladelphiaPhiladelphia
  2. 2.School of MedicineUniversity of PennsylvaniaPhiladelphia
  3. 3.Division of Hematology/OncologyChildren's HospitalSan Diego

Personalised recommendations