Immunologic Research

, Volume 26, Issue 1–3, pp 7–13 | Cite as

Complement in central nervous system inflammation

  • Scott R. Barnum


The complement system is well represented in the central nervous system. Glial cells and neurons produce or express all of the activation and regulatory proteins and the C3a/C5a receptors. Inhibition of complement activation is protective in experimental allergic encephalomyelitis, the animal model for multiple sclerosis, suggesting possible therapeutic approaches for human disease. New findings indicate that the C3a/C5a receptors are widely expressed in neurons and may modulate neuronal function.

Key words

Complement Anaphylatoxin receptors Glial cells Neurons Experimental allergic encephalomyelitis Neurobiology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carroll MC: The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol 1998; 16:545–568.PubMedCrossRefGoogle Scholar
  2. 2.
    Song WC, Sarrias MR, Lambris JD: Complement and innate immunity. Immunopharmacology 2000; 49:187–198.PubMedCrossRefGoogle Scholar
  3. 3.
    Morgan BP, Gasque P: Extrahepatic complement biosynthesis: where, when and why? Clin Exp Immunol 1997;107:1–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Naughton MA, Botto M, Carter MJ, Alexander GJ, Goldman JM, Walport MJ: Extrahepatic secreted complement C3 contributes to circulating C3 levels in humans. J Immunol 1996;156:3051–3056.PubMedGoogle Scholar
  5. 5.
    Zwirner J, Fayyazi A, Gotze O: Expression of the anaphylatoxin C5a receptor in non-myeloid cells. Mol Immunol 1999;36:877–884.PubMedCrossRefGoogle Scholar
  6. 6.
    Whaley K, Schwaeble W: Complement and complement deficiencies. Semin Liver Dis 1997; 17:297–310.PubMedCrossRefGoogle Scholar
  7. 7.
    Schmidt BZ, Colten HR: Complement: a critical test of its biological importance. Immunol Rev 2000;178:166–176.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhou W, Marsh JE, Sacks SH: Intrarenal synthesis of complement. Kidney Int 2001;59:1227–1235.PubMedCrossRefGoogle Scholar
  9. 9.
    Yasojima K, Schwab C, McGeer EG, McGeer PL: Up-regulated production and activation of the complement system in Alzheimer's disease brain. Am J Pathol 1999;154:927–936.PubMedGoogle Scholar
  10. 10.
    Barnum SR: Inhibition of complement as a therapeutic approach in inflammatory central nervous system (CNS) disease. Mol Med 1999;5:569–582.PubMedGoogle Scholar
  11. 11.
    Nataf S, Stahel PF, Davoust N, Barnum SR: Complement anaphylatoxin receptors on neurons: new tricks for old receptors? Trends Neurosci 1999;22:397–402.PubMedCrossRefGoogle Scholar
  12. 12.
    Gasque P, Dean YD, McGreal EP, VanBeek J, Morgan BP: Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology 2000;49:171–186.PubMedCrossRefGoogle Scholar
  13. 13.
    Shin ML, Rus H, Niculescu F: Complement system in central nervous system disorders, in Volanakis JE, Frank MM (eds): The Human Complement System in Health and Disease, New York, Marcel Dekker, 1998, pp. 499–525.Google Scholar
  14. 14.
    Barnum SR: The complement system in demyelinating disease: new insights from transgenic and complement-deficient mice, in Bondy S, Campbell A (eds): Inflammatory Events in Neurodegeneration. Scottsdale, AZ, Prominent Press, 2001, pp. 139–156.Google Scholar
  15. 15.
    Campbell IL, Stalder AK, Akwa Y, Pagenstecher A, Asensio VC: Transgenic models to study the actions of cytokines in the central nervous system. Neuroimmunomodulation 1998;5:126–135.PubMedCrossRefGoogle Scholar
  16. 16.
    Davoust N, Nataf S, Reiman R, Holers MV, Campbell IL, Barnum SR: Central nervous system-targeted expression of the complement inhibitor sCrry prevents experimental allergic encephalomyelitis. J Immunol 1999;163:6551–6556.PubMedGoogle Scholar
  17. 17.
    Circolo A, Garnier G, Fukuda W, Wang X, Hidvegi T, Szalai AJ, Briles DE, Volanakis JE, Wetsel RA, Colten HR: Genetic disruption of the murine complement C3 promoter region generates deficient mice with extrahepatic expression of C3 mRNA. Immunopharmacology 1999;42:135–149.PubMedCrossRefGoogle Scholar
  18. 18.
    Matsumoto M, Fukuda W, Circolo A, Goellner J, Strauss-Schoenberger J, Wang X, Fujita S, Hidvegi T, Chaplin DD, Colten HR: Abrogation of the alternative complement pathway by targeted deletion of murine factor B. Proc Natl Acad Sci USA 1997;94:8720–8725.PubMedCrossRefGoogle Scholar
  19. 19.
    Nataf S, Carroll SL, Wetsel RA, Szalai AJ, Barnum SR: Attenuation of experimental autoimmune demyelination in complement-deficient mice. J Immunol 2000; 165:5867–5873.PubMedGoogle Scholar
  20. 20.
    Calida DM, Constantinescu C, Purev E, Zhang GX, Ventura ES, Lavi E, Rosetami A: Cutting edge: C3, a key component of complement activation, is not required for the development of myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis in mice. J Immunol 2001;166:723–726.PubMedGoogle Scholar
  21. 21.
    Campos Torres A, Reiman R, Martin B, Campbell IL, Barnum SR: Characterization of transgenic mice over-expressing the complement anaphylatoxin C5a in the CNS. Immunopharmacology 2000;49:48.CrossRefGoogle Scholar
  22. 22.
    Boos L, Campos Torres A, Ames R, Campbell IL, Barnum SR: Characterization of transgenic mice over-expressing the complement anaphylatoxin C3a in the CNS. J Neuroimmunol 2001;118:11.Google Scholar
  23. 23.
    Reiman R, Campos Torres A, Ting J, Martin B, Campbell IL, Barnum SR: Experimental allergic encephalomyelitis in mice over-expressing the complement anaphylatoxin C5a in the CNS. J Neuroimmunol 2001; 118:20.Google Scholar
  24. 24.
    Tocco G, Musleh W, Sakhi S, Schreiber SS, Baudry M, Pasinetti GM: Complement and glutamate neurotoxicity: genotypic influences of C5 in a mouse model of hippocampal neurodegeneration. Mol Chem Neuropathol 1997;31:289–300.PubMedGoogle Scholar
  25. 25.
    Pasinetti GM, Tocco G, Sakhi S, Musleh WD, DeSimoni MG, Mascarucci P, Schreiber S, Baudry M, Finch CE: Hereditary deficiencies in complement C5 are associated with intensified neurodegenerative responses that implicate new roles for the C-system in neuronal and astrocytic functions. Neurobiol Dis 1996;3:197–204.PubMedCrossRefGoogle Scholar
  26. 26.
    Osaka H, Mukheriee P, Alsen PS, Pasinetti GM: Complement-derived anaphylatoxin C5a protects against glutamate-mediated neurotoxicity. J Cell Biochem 1999;73:303–311.PubMedCrossRefGoogle Scholar
  27. 27.
    Osaka H, McGinty A, Hoepken UE, Lu B, Gerard C, Pasinetti GM: Expression of C5a receptor in mouse brain: role in signal transduction and neurodegeneration. Neuroscience 1999;88:1073–1082.PubMedCrossRefGoogle Scholar
  28. 28.
    Pasinetti GM: Inflammatory mechanisms in neurodegeneration and Alzheimer's disease: the role of the complement system. Neurobiol Aging 1996;17:707–716.PubMedCrossRefGoogle Scholar
  29. 29.
    Mukherjee P, Pasinetti GM: Complement anaphylatoxin C5a neuroprotects through mitogen-activated protein kinase-dependent inhibition of caspase 3. J Neurochem 2001;77:43–49.PubMedCrossRefGoogle Scholar
  30. 30.
    Mukherjee P, Pasinetti GM: The role of complement anaphylatoxin C5a in neurodegeneration: implications in Alzheimer's disease. J Neuroimmunol 2000;105:124–130.PubMedCrossRefGoogle Scholar
  31. 31.
    O'Barr SA, Caguica J, Gruol D, Perkins G, Ember JA, Hugli T, Cooper NR: Neuronal expression of a functional receptor for the C5a complement activation fragment. J Immunol 2001;166:4154–4162.PubMedGoogle Scholar
  32. 32.
    Heese K, Hock C, Otten U: Inflammatory signals induce neurotrophin expression in human microglial cells. J Neurochem 1998;70:699–707.PubMedCrossRefGoogle Scholar
  33. 33.
    Boos L, Campos Torres A, Gerard C, Barnum SR: Distruption of the C5a receptor gene has no effect on experimental allergic encephalomyelitis. J Neuroimmunol 2001; 118:11.Google Scholar
  34. 34.
    Stabel PF, Nadal D, Pfister HW, Paradisis PM, Barnum SR: Complement C3 and factor B cerebrospinal fluid concentrations in bacterial and aseptic meningitis. Lancet 1997;349:1886–1887.CrossRefGoogle Scholar
  35. 35.
    Davoust N, Jones J, Stahel PF, Ames RS, Bamum SR: Receptor for the C3a anaphylatoxin is expressed by neurons and glial cells. Glia 1999;26:201–211.PubMedCrossRefGoogle Scholar
  36. 36.
    Campos Torres A, Reiman R, Barnum SR: Distribution the complement anaphylatoxin receptors in the normal mouse CNS. J Neuroimmunol 2001;118:12.Google Scholar
  37. 37.
    Schupf N, Williams CA, Berkman A, Cattell WS, Kerper L: Binding specificity and presynaptic action of anaphylatoxin C5a in rat brain. Brain Behav Immun 1989;3:28–38.PubMedCrossRefGoogle Scholar
  38. 38.
    Moller T, Nolte C, Burger R, Verkhratsky A, Kettenmann H: Mechanisms of C5a and C3a complement fragment-induced [Ca2+Ji signaling in mouse microglia. J Neurosci 1997;17:615–624.PubMedGoogle Scholar
  39. 39.
    Hschner S, Nolte C, Kettenmam H: Complement factor C5a and epidermal growth factor trigger the activation of outward potassium currents in cultured murine microglia. Neuroscience 1996;73:1109–1120.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of Alabama at BirminghamBirmingham

Personalised recommendations