Advertisement

Immunologic Research

, Volume 25, Issue 3, pp 201–217 | Cite as

A mouse model for infectious mononucleosis

  • Emilio Flaño
  • David L. Woodland
  • Marcia A. Blackman
Article

Abstract

Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that establishes life-long latency and is associated with lymphoproliferative disorders and the development of several malignancies. EBV infection is frequently, but not always, associated with the development of a syndrome termed infectious mononucleosis. The recent isolation and characterization of a murine γ-herpersvirus, MHV-68 (γHV-68) has provided the first small animal model for studying immunity and pathogenesis of a γ-herpesvirus in its natural host. MHV-68 has important biological and genetic similarities with the human γ-herpe sviruses. Following intranasal infection of mice with MHV-68, an acute respiratory infection in the lung develops and is cleared, followed by the establishment of latency. Similar to EBV, MHV-68 latency is largely established in B cells, although other cell types can be latently infected. The establishment of latency correlates with a prominent splenomegaly, polyclonal B cell activation with associated autoantibody production, and CD8+ T cell-dominated peripheral blood lymphocytosis, in many aspects mirroring EBV-induced infectious mononucleosis. There are key differences in the MHV-68-and EBV-induced CD8+T cell responses however. Whereas the expanded CD8+T cells associated with EBV-induced mononucleosis are largely the outgrowth of T cells responding to lytic viral epitopes elicited during the acute phase of the response, the CD8+T cell lymphocytosis associated with MHV-68-induced infectious mononucleosis is dominated by an oligoclonal population of T cells expressing Vβ4+T cell receptors that are not reactive to acute viral epitopes. The focus of this article will be to highlight the similarities and differences in the infectious mononucleosis syndrome associated with human and murine γ-herpesviruses.

Key Words

Virus Herpesvirus Immunity EBV KSHV T lymphocytes B lymphocytes Latency Mononucleosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rickinson AB, Kieff E: Epstein-Barr Virus In Fields Virology. D.M.K.B.N. Fields, P.M. Howley, editor Lippinc ott-Raven Publishers. Philadelphia 1996;2397–2446.Google Scholar
  2. 2.
    Kieff E: Epstein-Barr Virusand Its Replication. In Fields Virology. D.M.K.B.N. Fields, P.M. Howley, editor. Lippincott-Raven Publishers, Philadelphia 1996;2343–2396.Google Scholar
  3. 3.
    Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS: Identification of herpes virus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994;266:1865–1869.PubMedCrossRefGoogle Scholar
  4. 4.
    Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM: Kaposi’s sarcoma-associated herpes-virus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 1995;332:1186–1191.PubMedCrossRefGoogle Scholar
  5. 5.
    Blaskovic D, Stancekova M, Svobodova J, Mistrikova J: Isolation of five strains of herpes viruses from two species of free living small rodents [letter]. Acta Virol 1980;24:468.PubMedGoogle Scholar
  6. 6.
    Virgin HW, Latreille P, Wamsley P, et al: Complete sequence and genomic analysis of murine gammaherpesvirus 68 J Virol 1997; 71:5894–5904.PubMedGoogle Scholar
  7. 7.
    Mackett M, Stewart JP, de VPS, et al.: Genetic content and preliminary transcriptional analysis of a representative region of murine gammaherpesv irus 68. J Gen Virol 1997;78:1425–1433.PubMedGoogle Scholar
  8. 8.
    Virgin HW, Speck SH: Unraveling immunity to gamma-herpesviruses: a new model for understanding the role of immunity in chronic virus infection. Curr Opin Immunol 1999;11:371–379.PubMedCrossRefGoogle Scholar
  9. 9.
    Speck SH, Virgin HW: Host and viral genetics of chronic infection: a mouse model of gammaherpesvirus pathogenesis. Curr Opin Microbiol 1999;2:403–409.PubMedCrossRefGoogle Scholar
  10. 10.
    Nash AA, Dutia BM, Stewart JP, Davison AJ: Natural history of murine gammaherpesvirus infection. Philos Trans R Soc Lond B Biol Sci 2001;356:569–579.PubMedGoogle Scholar
  11. 11.
    Tripp RA, Hamilton-Easton AM, Cardin RD, et al.: Pathogenesis of an infections mononucleosis-like disease induced by a murine gamma-herpesv irus: role for a viral superantigen? J Exp Med 1997; 185:1641–1650.PubMedCrossRefGoogle Scholar
  12. 12.
    Blackman MA, Flaño E, Usherwood E, Woodland DL: Murine γ-herpesvirus-68: a mouse model for infectious mononucleosis? Mol Med Today 2000;6:488–490.PubMedCrossRefGoogle Scholar
  13. 13.
    Sunil-Chandra NP, Arno J, Fazakerley J, Nash AA: Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. Am J Pathol 1994;145:818–826.PubMedGoogle Scholar
  14. 14.
    Sunil-Chandra NP, Efstathiou S, Arno J, Nash AA: Virological and pathological features of mice infected with murine gammaherpesvirus 68. J Gen Virol 1992; 73:2347–2356.PubMedGoogle Scholar
  15. 15.
    Stevenson PG, Doherty PC: Kineticanalysis of the specific host response to a murine gammaherpesvirus. J Virol 1998;72:943–949.PubMedGoogle Scholar
  16. 16.
    Flaño E, Husain SM, Sample JT, Woodland DL, Blackman MA: Latent murine gammaherpesvirus infection is esta blished inactivated B cells, dendritic cells and macrophages. J Immunol 2000;165:1074–1081.PubMedGoogle Scholar
  17. 17.
    Weck KE, Kim SS, Virgin HI, Speck SH: B cells regulate murine gammaherpesvirus 68 latency. J Virol 1999;73:4651–4661.PubMedGoogle Scholar
  18. 18.
    Peacock JW, Bost KL: Infection of intestinal epithelial cells and development of systemic disease following gastric instillation of murine gammaherpesvirus-68. J Gen Virol 2000;81 Pt 2:421–429.Google Scholar
  19. 19.
    Cardin RD, Brooks JW, Sarawar SR, Doherty PC: Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+T cells. J Exp Med 1996;184:863–871.PubMedCrossRefGoogle Scholar
  20. 20.
    Stevenson PG, Belz GT, Altman JD, Doherty PC: Changing patterns of dominance in the CD8+T cell response during acute and persistent murine gamma-herpesvirus infection. Eur J Immunol 1999; 29:1059–1067.PubMedCrossRefGoogle Scholar
  21. 21.
    Ehtisham S, Sunil-Chandra NP, Nash AA: Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8T cells. J Virol 1993;67:5247–5252.PubMedGoogle Scholar
  22. 22.
    Weck KE, Barkon ML, Yoo LI, Speck SH, Virgin HJ. Mature B cells are required for acute splenic infection, but not foresta blishment of latency, by murine gammaherpesvirus 68. J Virol 1996;70:6775–6780.PubMedGoogle Scholar
  23. 23.
    Stevenson PG, Cardin RD, Christensen JP, Doherty PC: Immunological control of a murine gammaherpesvirus independent of CD8+T cells. J Gen Virol 1999; 80:477–483.PubMedGoogle Scholar
  24. 24.
    Stewart JP, Micali N, Usherwood EJ, Bonina L, Nash AA: Murine gamma-herpesvirus 68 glycoprotein 150 protects against virus-induced mononucleosis: a model system for gamma-herpesvirus vaccination. Vaccine 1999;17:152–157.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu L, Usherwood EJ, Blackman MA, Woodland DL: T-Cell vaccination alters the course of murine herpesvirus 68 infection and the establishment of viral latency in mice. J Virol 1999;73:9849–9857.PubMedGoogle Scholar
  26. 26.
    Stevenson PG, Belz GT, Castrucci MR, Altman JD, Doherty PC: A gamma-herpesvirussneaks through a CD8+T cell response primed to a lytic-phase epitope. Proc Nat Acad Sci USA 1999;96:9281–9286.PubMedCrossRefGoogle Scholar
  27. 27.
    Stewart JP, Usherwood EJ, Ross A, Dyson H, Nash T: Lung epithelial cells are a major site of murine gammaherpesvirus persistence. J Exp Med 1998;187:1941–1951.PubMedCrossRefGoogle Scholar
  28. 28.
    Liu L, Flaño E, Usherwood EJ, Surman S, Blackman MA, Woodland DL: Lytic cycle T cell epitopes are expressed in two distinct phases during MHV-68 infection. J Immunol 1999;163:868–874.PubMedGoogle Scholar
  29. 29.
    Sunil-Chandra NP, Efstathiou S, Nash AA: Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. J Gen Virol 1992;73:3275–3279.PubMedGoogle Scholar
  30. 30.
    Sunil-Chandra NP, Efstathiou S, Nash AA: Interactions of murine gammaherpesvirus 68 with B and T cell lines. Virology 1993;193:825–833.PubMedCrossRefGoogle Scholar
  31. 31.
    Bowden RJ, Simas JP, Davis AJ, Efstathiou S: Murine gammaher-pesvirus 68 encodes tRNA-like sequences which are expressed during latency. J Gen Virol 1997; 78:1675–1687.PubMedGoogle Scholar
  32. 32.
    Simas JP, Efstathiou S: Murine gammaherpesvirus 68: a model for the study of gammaherpesvirus pathogenesis. Trends Microbiol 1998;6:276–282.PubMedCrossRefGoogle Scholar
  33. 33.
    Simas JP, Bowden RJ, Paige V, Efstathiou S: Four tRNA-like sequences and aserpin homologue encoded by murine gammaherpesvirus 68 are dispensable for lytic replication in vitro and latency in vivo. J Gen Virol 1998;79:149–153.PubMedGoogle Scholar
  34. 34.
    Weck KE, Kim SS, Virgin HI, Speck SH: Macrophages are the major reservoir of latent murine gammaherpesvirus 68 in peritoneal cells. J Virol 1999;73:3273–3283.PubMedGoogle Scholar
  35. 35.
    Christensen JP, Cardin RD, Branum KC, Doherty PC: CD4+T cell-mediated control of a gammaherpesvirus in B cell-deficient mice is mediated by IFN-gamma. Proc Nat Acad Sci USA 1999;96:5135–5140.PubMedCrossRefGoogle Scholar
  36. 36.
    Stevenson PG, Belz GT, Altman JD, Doherty PC: Virus-specific CD8+T cell numbers are maintained during gamma-herpesvirus reactivation in CD4-deficient mice. Proc Nat Acad Sci USA 1998;95:15,565–15,570.CrossRefGoogle Scholar
  37. 37.
    van Berkel V, Barrett J, Tiffany HL, et al.: Identification of a gammaherpesvirus selective chemokine binding protein that inhibitis chemokine action. J Virol 2000; 74:6741–6747.PubMedCrossRefGoogle Scholar
  38. 38.
    Parry CM, Simas JP, Smith VP, et al.: A broad spectrum secreted chemokine binding protein encoded by a herpesvirus. J Exp Med 2000;191:573–578.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang GH, Garvey TL, Cohen JI: The murine gammaherpesvirus-68 M11 protein inhibits Fas-and TNF-induced apoptosis. J Gen Virol 1999;80:2737–2740.PubMedGoogle Scholar
  40. 40.
    Stevenson PG, Efstathiou S, Doherty PC, Lehner PJ: Inhibition of MHC class I-restricted antigen presentation by gamma 2-herpesviruses. Proc Nat Acad Sci USA 2000;97:8455–8460.PubMedCrossRefGoogle Scholar
  41. 41.
    Garzelli C, Taub FE, Scharff JE, Prabhakar BS, Ginsberg-Fellner F, Notkins AL: Esptein-Barr virus-transformed lymphocytes produce monoclonal autoantibodies that react with antigens in multiple organs. J Virol 1984;52:722–725.PubMedGoogle Scholar
  42. 42.
    Doherty PC, Tripp RA, Hamilton-Easton AM, Cardin RD, Woodland DL, Blackman MA: Tuning into immunological dissonance: an experimental model for infectious mononucleosis. Curr Opin Immunol 1997;9:477–483.PubMedCrossRefGoogle Scholar
  43. 43.
    Sangster MY, Topham DJ, D’Costa S, et al.: Analysis of the virus-specific and nonspecific B cell response to a persistent B-lymphotropic gammaherpesvirus. J Immunol 2000;164:1820–1828.PubMedGoogle Scholar
  44. 44.
    Nash AA, Sunil-Chandra NP: Interactions of the murine gammaherpesvirus with the immune system. Curr Opin Immunol 1994; 6:560–563.PubMedCrossRefGoogle Scholar
  45. 45.
    Usherwood EJ, Ross AJ, Allen DJ, Nash AA: Murine gammaherpesvirus-induced splenomegaly: a critical role for CD4 T cells. J Gen Virol 1996;77:627–630.PubMedGoogle Scholar
  46. 46.
    Stevenson PG, Doherty PC: Nonantigen-specific B-cell activation following murine gammaherpesvirus infection is CD4 independent in vitro but CD4 dependent in vivo. J Virol 1999;73:1075–1079.PubMedGoogle Scholar
  47. 47.
    Sarawar SR, Cardin RD, Brooks JW, Mehrpooya M, Tripp RA, Doherty PC: Cytokine production in the immune response to murine gammaherpesvirus 68. J Virol 1996;70:3264–3268.PubMedGoogle Scholar
  48. 48.
    Sarawar SR, Brooks JW, Cardin RD, Mehrpooya M, Doherty PC: Pathogenesis of murine gammaherpesvirus-68 infection in interleukin-6-deficient mice. Virology 1998;249:359–366.PubMedCrossRefGoogle Scholar
  49. 49.
    Usherwood EJ, Stewart JP, Robertson K, Allen DJ, Nash AA: Absence of splenic latency in murine gammaherpesvirus 68-infected B cell-deficient mice. J Gen Virol 1996;77:2819–2825.PubMedCrossRefGoogle Scholar
  50. 50.
    Hutt-Fletcher LM, Balachandran N, Elkins MH: B cell activation by cytomegalovirus. J Exp Med 1983; 158:2171–2176.PubMedCrossRefGoogle Scholar
  51. 51.
    Callan MF, Steven N, Krausa P, Wilson JD, Moss PA, Gillespie GM, Bell JI, Rickinson AB, McMichael AJ: Large clonal expansions of CD8+T cells in acute infectious mononucleosis. Nat Med 1996;2:906–911.PubMedCrossRefGoogle Scholar
  52. 52.
    Callan MF, Tan L, Annels N, Ogg GS, Wilson JD, O’Callaghan CA, Steven N, McMichael AJ, Rickinson AB: Direct visualization of antigen-specific CD8+T cells during the primary immune response to Epstein-Barr virus In vivo. J Exp Med 1998;187:1395–1402.PubMedCrossRefGoogle Scholar
  53. 53.
    Deckhut AM, Allan W, McMickle A, Eichelberger M, Blackman MA, Doherty PC, Woodland DL: Prominent usage of Vβ 8.3T cells in the H-2Db-restricted response to an influenza a virus nucleoprotein epitope. J Immunol 1993;151:2658–2666.PubMedGoogle Scholar
  54. 54.
    Ewing C, Allan W, Daly K, Hou S, Cole GA, Doherty PC, Blackman MA: Virus-specific CD8+T-cell responses in mice transgenic for a T-cell receptor beta chain selected at random. J Virol 1994;68:3065–3070.PubMedGoogle Scholar
  55. 55.
    Cole GA, Hogg TL, Woodland DL: The MHC class 1-restricted T cell response to Sendai virus infection in C57BL/6 mice: a single immunodominant epitope elicits an extremely diverse repertoire of T cells. Int Immunol 1994;6:1767–1775.PubMedCrossRefGoogle Scholar
  56. 56.
    Smith TJ, Terada N, Robinson CC, Gelfand EW: Acute infectious mononucleosis stimulates the selective expression/expansion of Vβ6.1–3 and Vβ7 T cells. Blood 1993;81:1521–1526.PubMedGoogle Scholar
  57. 57.
    Slohod KS, Freiberg AS, Allan JE, Rencher SD, Hurwitz JL: T-cell receptor heterogeneity among Epstein-Barr virus-stimulated T-cell populations. virology 1993; 196:179–189.CrossRefGoogle Scholar
  58. 58.
    Slobod KS, Leggiadro RJ, Presbury G, Smith FS, Hurwitz JL: Peripheral T cell receptorrepertoire among CD4+ and CD8+ subsets during acute infectious mononucleosis. Viral Immunol 1994;7:151–153.PubMedCrossRefGoogle Scholar
  59. 59.
    Sutkowski N, Palkama T, Ciurli C, Sekaly RP, Thorley-Lawson DA, Huber BT: An Epstein-Barr virus-associated superantigen. J Exp Med 1996;184:971–980.PubMedCrossRefGoogle Scholar
  60. 60.
    Sanderson S, Shastri N: LacZ inducible, antigen/MHC-specific T cell hybrids. Int Immunol 1994; 6:369–376.PubMedCrossRefGoogle Scholar
  61. 61.
    Shastri N: Single T cell probes for antigen/MHC expression. Curr Opin Immunol 1995;7:258–262.PubMedCrossRefGoogle Scholar
  62. 62.
    Coppola MA, Flaño E, Nguyen P, Hardy CL, Cardin RD, Shastri N, Woodland DL, Blackman MA: Apparent MHC-independentstimulation of CD8+T cells in vivo during latent murine gammaherpesvirus infection. J Immunol 1999;163:1481–1489.PubMedGoogle Scholar
  63. 63.
    Hardy CL, Silins SL, Woodland DL, Blackman MA: Murine gammaherpesvirus infection causes Vβ4-specific CDR3-restricted clonal exparsions with in CD8+ peripheral blood T lymphocytes. Int Immunol 2000;12:1193–1204.PubMedCrossRefGoogle Scholar
  64. 64.
    Brooks JW, Hamilton-Easton AM, Christensen JP, Cardin RD, Hardy CL, Doherty PC: Requirement for CD40 ligand, CD4+T cells, and B cells in an infectious mononucleosis-like syndrome. J Virol 1999;73:9650–9654.PubMedGoogle Scholar
  65. 65.
    Flaño E, Woodland DL, Blackman MA: Requirement for CD4+ T cells in Vβ4+CD8+ T cell activation associated with latent murinegammaherpesvirus infection. J Immunol 1999;163:3403–3408.PubMedGoogle Scholar
  66. 66.
    Arbones ML, Ord DC, Ley K, Ratech H, Maynard-Curry C, Otten G, Capon DJ, Tedder TF: Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1994;1:247–260.PubMedCrossRefGoogle Scholar
  67. 67.
    Steeber DA, Green NE, Sato S, Tedder TF: Lyphocyte migration in L-selectin-deficient mice. Altered subset migration and aging of the immune system. J Immunol 1996;157:1096–1106.PubMedGoogle Scholar
  68. 68.
    Tedder TF, Steeber DA, Pizcueta P: L-selectin-deficient mice have impaired leukocyte recruitment into inflammatory sites. J Exp Med 1995;181:2259–2264.PubMedCrossRefGoogle Scholar
  69. 69.
    Xu J, Grewal IS, Geba GP, Flavell RA: Impaired primary T cell responses in L-selectin-deficient mice. J Exp Med 1996;183:589–598.PubMedCrossRefGoogle Scholar
  70. 70.
    Flaño E, Woodland DL, Blackman MA, Doherty PC: Analysis of virus-specific CD4+ T cells during long-term gammaherpesvirus infection. J Virol 2001;75:7744–7748.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  • Emilio Flaño
  • David L. Woodland
  • Marcia A. Blackman
    • 1
  1. 1.Trudenu InstituteSaranac Lake

Personalised recommendations