Immunologic Research

, Volume 25, Issue 1, pp 75–95 | Cite as

Interactions of integrins with their partner proteins in leukocyte membranes

  • Howard R. Petty
  • Randall G. Worth
  • Robert F. ToddIII

Abstract

Integrins participate in many aspects of immunologic and inflammatory responses, especially those involving cell migration, adherence, and activation. Although leukocyte integrins such as complement receptor type 3 (CR3) are known to carry out certain functions without the intervention of other plasma membrane receptors, many plasma membrane proteins are now known to physically interact and functionally cooperate with integrins. Several of these interactions are highly dynamic within cell membranes; thus integrin-partner protein interactions change during certain physiological processes. This allows an extraordinary adaptability of the system to prime and promote proinflammatory signaling. Since our discovery of the CR 3-FcyRIIIB interaction, the plasma membrane protein repertoire of β1, β2, and β3 integrins has grown to include: FcγRIIA (CD32), uPAR (urokinase-type plasminogen activator receptor; CD87), CD14, voltage-gated K+ channels (Kvl.3), integrin-associated protein (IAP), CD98, tetraspans (TM4SF), insulin receptors, and PDGFβ receptors. In this article we will highlight certain features of this growing field of research, especially with regard to their relevance in immunology and inflammation.

Key Words

Integrins CR3 Adherence receptors GPI-linked proteins Urokinase receptors Fcγ receptors Tetraspans Potassium channels Receptor-receptor interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hynes RO: Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1996;69:11–25.Google Scholar
  2. 2.
    Albelda SM: Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab Invest 1993;68:4–17.PubMedGoogle Scholar
  3. 3.
    Arnaout MA: Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 1996;75:1037–1050.Google Scholar
  4. 4.
    Todd III RF, Petty HR: The β2 (CD11/CD18) integrins can serve as signaling partners for other leukocyte receptors. J Lab Clin Med 1997;129:492–498.PubMedGoogle Scholar
  5. 5.
    Petty HR, Todd RF: Integrins as promiscuous signal transduction devices. Immunol Today 1996; 17:209–212.PubMedGoogle Scholar
  6. 6.
    Diamond MS, Springer TA: The dynamic regulation of integrin adhesiveness. Curr Biol 1994;4:506–517.PubMedGoogle Scholar
  7. 7.
    Zhou MJ, Todd III RF, vande Winkel JGJ, Petty HR: Co-capping of neutrophil FcRIII and CR3: Role of lectin-like interactions in their association. FASEB J 1991;5:A1463.Google Scholar
  8. 8.
    Woods A, Couchman JR: Integrin modulation by lateral association. J Biol Chem 2000; 275:24,233–24,236.Google Scholar
  9. 9.
    Porter JC, Hogg N: Integrins take partners: cross-talk between integrins and other membrane receptors. Trends Cell Biol 1998;8: 390–396PubMedGoogle Scholar
  10. 10.
    Hemler ME: Integrin associated proteins. Curr Opin Cell Biol 1998;10:578–585.PubMedGoogle Scholar
  11. 11.
    Petty, HR: Overview of the physicalstate of proteins within cells. In: Current Protocols in Cell Biology. (J. S. Bonifacino, J. Lippincott-Schwartz, M. Dasso, J. Harford and K. Yamada, eds.) 1999. John Wiley & Sons, pp. 5.1.1–5.1.11.Google Scholar
  12. 12.
    Zhou M-J, Todd III RF, van de Winkel CG, Petty HR: Co-capping of the leukoadhesin molecules complement receptor type III and lymphocyte function-associated antigen-1 with Fcy receptor III in human neutrophils. Possible role of lectin-like interactions. J Immunol 1993;150:3030–3041.PubMedGoogle Scholar
  13. 13.
    Kindzelskii AL, Yang Z-Y, Nabel GJ, Todd III RF, Petty HR: Ebola virus secretory glycoprotein (sGP) diminishes FcyR IIIB-to-CR3 proximity on neutrophils. J Immunol 2000; 164:953–958.PubMedGoogle Scholar
  14. 14.
    Galon J, Gauchat JF, Mazieres N, et al.: Solubee Fcy receptor type III (FcγRIII, CD16) triggers cell activation through interaction with complement receptors. J Immunol 1996;157: 1184–1192.PubMedGoogle Scholar
  15. 15.
    Stockl J, Majdic O, Pickl WF, et al.: Granulocyte activation via a binding site near the C-terminal region of complement receptor type III α-chain (CD11b) potentially involved in integral membrane complex formation with glycosyl-phosphatidy-linositol-anchored Fcγ RIIIB (CD16) molecules. J Immunol 1995;154: 5452–5463.PubMedGoogle Scholar
  16. 16.
    Poo HR, Krauss JC, Mayo-Bond L, Todd RF, Petty HR: Interaction of Fcγ receptortype IIIB with complement receptor type 3 in fibroblast transfectants: Evidence from lateral diffusion and resonance energy transferex periments. J Mol Biol 1995;247: 597–603.PubMedGoogle Scholar
  17. 17.
    Krauss JC, Poo H, Xue W, Mayo-Bond L, Todd III RF, Petty HR: Reconstitution of antibody-dependent phagocytosis in fibroblasts expressing Fcy receptor IIIB and the complement receptortype III. J Immunol 1994;153: 1769–1777.PubMedGoogle Scholar
  18. 18.
    Sehgal G, Zhang K, Todd III RF, Boxer LA, Petty HR. Lectin-like inhibition of immune complex receptor-mediated stimulation of neutrophils. Effects on cytosolic calcium release and superoxide production. J Immunol 1993; 150:4571–4580.PubMedGoogle Scholar
  19. 19.
    Zhou M-J, Brown EJ: CR3 (Mac-1, αmβ2, CD11b/CD18) and FcγRIII cooperate in generation of a neutrophil respiratory burst: requirement for FcγRII and tyrosine phosphorylation. J Cell Biol 1994;125:1407–1416.PubMedGoogle Scholar
  20. 20.
    Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC: CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990;239:1431–1433.Google Scholar
  21. 21.
    Zarewych DM, Kindzelskii AL, Todd III RF, Petty HR: LPS induces CD14 association with complement receptor type III, which is reversed by neutrophil adhesion. J Immunol 1996;156: 430–433.PubMedGoogle Scholar
  22. 22.
    Jiang Q, Akashi S, Miyake K, Petty HR. Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-κB. J Immunol 2000;165: 3541–3544.PubMedGoogle Scholar
  23. 23.
    Preissner KT, May AE, Wohn KD, Germer M, Kanse SM: Molecular crosstalk between adhesion receptors and proteolytic cascades in vascular remodeling. Thrombosis and Hemotostasis 1997; 78:88–95.Google Scholar
  24. 24.
    Preissner KT, Kanse SM, May AE: Urokinase receptor: a molecular organizer in cellular communication. Curr Opin Cell Biol 2000; 12:621–628.PubMedGoogle Scholar
  25. 25.
    Ossowski L, Aguirre-Ghiso JA: Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol 2000;12:613–620.PubMedGoogle Scholar
  26. 26.
    Colman RW, Poxley TA, Najamunnisa S, et al.: Binding of high molecular weight kininogen to human endothelial cells is mediated via a site within domains 2 and 3 of the urokinase receptor. J Clin Invest 1997;100:1481–1487.PubMedGoogle Scholar
  27. 27.
    Brooks PC, Stomblad S, Sanders LC, Schalscha TL, Aimes RT, Stetler-Stevenson WG, Quigley JP, Cherish DA: Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 1996;85:683–693.PubMedGoogle Scholar
  28. 28.
    Cai T, Wright SD: Human leukocyte elastase is an endogenous ligand for the integrin CR3 (CD11b/CD18, Mac-1,αmβ2) and modulates polymorphonuclear leukocyte adhesion. J Exp Med 1996;184:1213–1223.PubMedGoogle Scholar
  29. 29.
    Chavakis T, Kanse SM, Lupu F, et al.: Different mechanisms define the antiadhesive function of high molecular weight kininogen in integrin- and urokinase receptor-dependent interactions. Blood 2000;96:514–522.PubMedGoogle Scholar
  30. 30.
    Colman RW, Jameson BA, Lin Y, Johnson D, Mousa SA: Domain 5 of high molecular weight kininogen (kininostatin) down-regulates endothelial cell proliferation and migration and inhibits angiogenesis. Blood 1999;95:543–550.Google Scholar
  31. 31.
    Wei Y, Waltz DA, Rao N, Drummond RJ, Rosenberg S, Chapman HS: Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem 1994;51:32,380–32,388.Google Scholar
  32. 32.
    Dano K, Behrendt N, Brenner N, Ellis V, Plough M, Pyke C: The urokinase receptor. Protein structure and role in plasminogen activation and cancer invasion. Fibrinolysis 1994;8:189–203.Google Scholar
  33. 33.
    Xue W, Kindzelskii AL, Todd RF, Petty HR: Physical association of complement receptor type 3 and urokinase-type plasminogen activator receptor in neutrophil membranes. J Immunol 1994;152:4630–4640.PubMedGoogle Scholar
  34. 34.
    Bohuslay J, Horejsi V, Hansmann C, et al.: Urokinase plasminogen activator receptor beta-2-integrins, and Src-kinases within a single receptor complex of human monocytes. J Exp Med 1995;181:1381–1390.Google Scholar
  35. 35.
    Cao D, Mizukami IF, Garni-Wagner BA, et al.: Human urokinase-type plasminogen activator primes neutrophils for superoxide anion release: possible roles of complement receptor type 3 and calcium. J Immunol 1995;154:1817–1829.PubMedGoogle Scholar
  36. 36.
    Kindzelskii AL, Laska ZO, Todd III RF, Petty HR: Urokinase-type plasminogen activator receptor reversibly dissociates from complement receptor type 3 αmβ2 during neutrophil polarization. J Immunol 1996;156:297–309.PubMedGoogle Scholar
  37. 37.
    Kindzelskii AL, Eszes MM, Todd III RF, Petty HR: Proximity oscillations of complement receptor type 4 and urokinase receptors on migrating neutrophils. Biophys J 1997;73:1777–1784.PubMedGoogle Scholar
  38. 38.
    Petty HR: Neutrophil oscillations: temporal and spatiotem poral aspects of cell behavior. Immunologic Res 2001;23:85–94.Google Scholar
  39. 39.
    Petty HR, Worth RG, Kindzelskii AL: Imaging sustained dissipative patterns in the metabolism of individual living cells. Physical Rev Lett 2000;84:2754–2757.Google Scholar
  40. 40.
    Petty HR, Kindzelskii AL: High-speed imaging of sustained metabolic target patterns in living neutrophils during adherence. J Phys Chem B 2000;104:10,952–10,955.Google Scholar
  41. 41.
    Petty HR, Kindzelskii AL: Dissipative metabolic patterns respond during neutrophil transmembrane signaling. Proc Natl Acad Sci, USA 2001;98:3145–3149.PubMedGoogle Scholar
  42. 42.
    Petty HR: Oscillatory signals in migrating neutrophils: effects of time-varying chemical and electrical fields. In: Self-Organized Biological Dynamics and Nonlnear Control by External Stimuli. (J. Walleczek, ed.). Cambridge University Press, Cambridge, UK, 2000 pp. 173–192.Google Scholar
  43. 43.
    Wei Y, Lukashev M, Simon DI, et al.: Regulation of integrin function by the urokinase receptor. Science 1996;273:1551–1555.PubMedGoogle Scholar
  44. 44.
    Simon DI, Wei Y, Zhang L, et al.: Identification of a urokinase receptor-integrin interaction site. J Biol Chem 2000;14:10,228–10,234.Google Scholar
  45. 45.
    Aguirre Ghiso JA, Kovalski K, Ossowski L: Tumor dormancy induce by down regulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 1999;147:89–103.PubMedGoogle Scholar
  46. 46.
    Wei Y, Yang X, Liu Q, Wilkins JA, Chapman HA: A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J Cell Biol 1999;144:1285–1294.PubMedGoogle Scholar
  47. 47.
    Chapman HA, Wei Y, Simon DI, Waltz DA: Role of urokinase receptor and caveolin in regulation of integrin signaling. Thromb Haemost 1999;82:291–297.PubMedGoogle Scholar
  48. 48.
    Okamoto T, Schlegel A, Scherer PE, Lisanti MP: Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 1998;273:5419–5422.PubMedGoogle Scholar
  49. 49.
    Tarui T, Mazar AP, Cines DB, Takada Y: Urokinase-type plasminogen activator receptor (CD87) is a ligand for integrins and mediates cell-cell interaction. J Biol Chem 2001;276:3983–3990.PubMedGoogle Scholar
  50. 50.
    May AE, Kanse SM, Lund LR, Gisler RH, Imhof BA, Preissner KT: Urokinase receptor (CD87) regulates leukocyte recruitment via Beta-2 integrins in vivo. J Exp Med 1998;188:1029–1037.PubMedGoogle Scholar
  51. 51.
    Gyetko MR, Todd III RF, Wilkinson CC, Sitrin RG: The urokinase receptor is required for human monocyte chemotaxis in vitro. J Clin Invest 1994;93:1380–1387.PubMedGoogle Scholar
  52. 52.
    Gyetko MR, Sitrin RG, Fuller JA, Todd III RF, Petty HR, Standiford TJ: The function of the urokinase receptor (CD87) in neutrophil chemotaxis. J Leuk Biol. 1995; 58:533–538.Google Scholar
  53. 53.
    Sitrin RG, Todd III RF, Petty HR, et al.: The urokinase receptor (CD87) facilitates CD11b/CD18-mediated adhesion of human monocytes. J Clin Invest 1996;97:1942–1951.PubMedGoogle Scholar
  54. 54.
    Kindzelskii AL, Ahmad I, Anderson D, et al.: Urokinase-type plasminogen activator receptors (uPAR) focus substrate proteolysis by neutrophils and tumor cells. FASEB J. 1996;10:A1333.Google Scholar
  55. 55.
    Kindzelskii AL, Zhou M-J, Haughland RP, Boxer LA, Petty HR: Oscillatory pericellular proteolysis and oxidant deposition during neutrophil locomotion. Biophys. J. 1998;74:90–97.PubMedCrossRefGoogle Scholar
  56. 56.
    Gyetko MR, Sud S, Kendall T, Fuller JA, Newstead MW, Standiford TJ: Urokinase receptor-deficient mice have impaired neutrophil recruitment in response to pulmonary Pseudomonas aeruginosa infection. J Immunl 2000;165:1513–1519.Google Scholar
  57. 57.
    Waltz DA, Fujita RM, Yang X, et al.: Nonproteolytic role for the urokinase receptor in cellular migration. Am J Respir Cell Mol Biol 2000;22:316–322.PubMedGoogle Scholar
  58. 58.
    Xue W, Mizukami M, Todd III RF, Petty HR: Urokinase type plasminogen activator receptors associate with β1 and β3 integrins of fibrosarcoma cells: dependence on extracellular matrix components. Cancer Res 1997;57:1682–1689.PubMedGoogle Scholar
  59. 59.
    Sitrin RG, Pan PM, Blackwood RA, Huang JB, Petty HR: Evidence for a signaling partnership between urokinase receptors (CD87) and L-selectin (CD62L) in human polymorphonuclear neutrophils. J Immunol 2001;166:4822–4825.PubMedGoogle Scholar
  60. 60.
    Sitrin RG, Pan PM, Harper H, Todd III RF, Harsh DM, Blackwood RA: Clustering of urokinase receptors (uPAR;CD87) induces proinflammatory signaling in human polymorphonuclear neutrophils. J Immunol 2000;165:3341–3349.PubMedGoogle Scholar
  61. 61.
    Wachtfogel YT, DeLa Cadena RA, Kunopuli SP, et al.: High molecular weight kininogen binds to Mac-1 on neutrophils by its heavy chain (domain 3) and its light chain (domain 5). J Biol Chem 1994; 269:19,307–19,312.Google Scholar
  62. 62.
    Ottonello L, Epstein AL, Dapino P, Barbera P, Morone P, Dallegri F: Monoclonal Lym-1 antibody-dependent cytolysis by neutrophils exposedto granulocyte-macrophage colony-stimulating factor: intervention of FcγR2 (CD32, CD11b-CD18 integrins, and CD66b glycoproteins. Blood 1999;93:3505–3511.PubMedGoogle Scholar
  63. 63.
    Yamanka T, Kuroki M, Matsuo Y, Matsuoka Y: Analysis of heterophilic cell adhesion medicated by CD66b and CD66e using their soluble recombinant proteins. Biochem Biophys Res Commun 1996;219:842–847.PubMedGoogle Scholar
  64. 64.
    Ruchaud-Sparagano MH, Stocks SC, Turley H, Dransfield I: Activation of neutrophil function via CD66: differential effects upon beta 2 integrin mediated adhesion. Br J Haematol 1997;98:612–620.PubMedGoogle Scholar
  65. 65.
    Suzuki K, Watanabe T, Sakurai S, et al.: A novel glycosylphophatidyl inositol-anchored protein on human leukocytes: a possible role for regulation of neutrophil adherence and migration. J Immunl 1999;162:4277–4284.Google Scholar
  66. 66.
    Aurrand-Linons M, Galland F, Bazin H, Zakharyev VM, Imhof BA, Naquet: Vanin-1 a novel GPI-linked perivascular molecule involved in thymus homing. Immunity 1996;5:391–405.Google Scholar
  67. 67.
    Suzuki H, Takei H, Ohtake K, Watanabe T, Sendo F: External calcium-dependent, F-actin-independent and pertusis toxin-insensitive novel neutrophil locomotion induced by a mAb. Int Immun 1997;9:763–769.PubMedGoogle Scholar
  68. 68.
    Kindzelskii AL, Todd RF, Boxer LA, Petty HR: CR3 promotes inter-receptor proximity on neutrophils. FASEB J 1994;8:A501.Google Scholar
  69. 69.
    Amenkov A, Ortlepp S, Hogg N: The β2 integrin Mac-1 but not p150,95 associates with FcγR11A. Eur J Immunol 1996;26:207–212.Google Scholar
  70. 70.
    Worth RG, Mayo-Bond L, van de Winkel JGJ, Todd III RF, Petty HR: CR3 (αmβ2; CD11b/CD18) restores IgG-dependent phagocytosis in transfectants expressing a phagocytosis-defective FcγRIIA (CD32) tail-minus mutant. J Immunol 1996;157:5660–5665.PubMedGoogle Scholar
  71. 71.
    Graham IL, Lefkowich JB, Anderson DC, Brown EJ: Immune complex-stimulated neutrophil LTB4 production is dependent on β2 integrins. J Cell Biol 1993;120:1509–1517.PubMedGoogle Scholar
  72. 72.
    Van der Bruggen T, Kok PTM, Raaijmakers JAM, Lammers JWJ, Konderman L: Cooperation between Fcγ receptor II and complement receptor type 3 during activation of platelet-activating factor release by cytokine-primed human eosinophils. J Immunol 1994;153:2729–2735.PubMedGoogle Scholar
  73. 73.
    Brown EJ, Bohnsack JF, Gresham HS: Mechanism of inhibition of immunoglobulin G-mediated phagocytosis by monoclonal antibodies that recognize the Mac-1 antigen. J Clin Invest 1998;81:365–375.Google Scholar
  74. 74.
    Worth RG, Kim MK, Mayo-Bond L, Todd III RF, Petty HR, Schreiber AD: Lysosomal fusion following FcγRIIA phagocytosis is mediated by a novel cytoplasmic motif. Blood 2000;96:443a.Google Scholar
  75. 75.
    Sullam PM, Hyun WC, Szollosi J, Dong J, Foss WM, Lopez JA: Physical proximity and functional interplay of the glycoproteins 1b-IX-V complex and the Fc receptor FcγRIIA on the platelet plasma membrane. J Biol Chem 1998;9:5331–5336.Google Scholar
  76. 76.
    Sun B, Li J, Kambayashi J: Interaction between GPIbα and FcγIIA receptor in human platelets. Biochem Biophys Res Comm 1999;266:24–27.PubMedGoogle Scholar
  77. 77.
    Levite M, Cahalon L, Peretz A, et al.: Extracellular K+ and opening of voltage-gated potassium channels activate T cell integrin function: Physical and functional association between Kv1.3 channels and Beta-1 integrins. J Exp Med 2000;191:1167–1176.PubMedGoogle Scholar
  78. 78.
    Quackenbush E, Clabby M, Gottesdiener KM, et al.: Molecular cloning of complementary DNAs encoding the heavy chain of the human 4F2 cell-surface antigen: a type II membrane glycoprotein involved in normal and neoplastic cell growth. Proc Natl Acad Sci, USA 1987;84:6526–6530.PubMedGoogle Scholar
  79. 79.
    Haynes BF, Hemler ME, Mann DL, et al.: Characterization of a monoclonal antibody (4F2) that binds to human monocytes and to a subset of activated lymphocytes. J Immunol 1981;126:1409–1420.PubMedGoogle Scholar
  80. 80.
    Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H: Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 1998;37:23,629–23,632.Google Scholar
  81. 81.
    Torrents D, Estevez R, Pineda M, et al.: Indentification and charaterization of a membrane protein (y+1. amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L. J Biol Chem 1998;49:32,437–32,445.Google Scholar
  82. 82.
    Fenczik CA, Sethi T, Ramos JW, Hughes PE, Ginsberg MH: Complementation of dominant suppression implicates CD98 in integrin activation. Nature 1997;390:81–85.PubMedGoogle Scholar
  83. 83.
    Zent R, Fenczik CA, Calderwood DA, Liu S, Dellos M, Ginsberg MH: Class- and splice variant-specific association of CD98 with integrin beta cytoplasmic domains. J Biol Chem 2000;7:5059–5064.Google Scholar
  84. 84.
    Fenczik CA, Zent R, Dellos M, Calderwood DA, Satriano J, Kelly C, Ginsberg MH: Distinct domains of CD98hc regulate integrins and amino acid transport. J Biol Chem 2001;276:8746–8752.PubMedGoogle Scholar
  85. 85.
    Miyamoto N, Higuchi Y, Tsurudome M, Ito M, Nishio M, Kawano M, Sudo A, Kato K, Uchida A, Ito Y: Induction of c-Src in human blood monocytes by anti-CD98/FRP-1 mAb in an Spl-dependent fashion. Cell Immunol 2000;204:105–113.PubMedGoogle Scholar
  86. 86.
    Suga K, Katagiri K, Knashi T, et al.: CD98 induces LFA-1-mediated cell adhesion in lymphoid cells via activation of Rapl. FEBS Lett 2001;489:249–253.PubMedGoogle Scholar
  87. 87.
    Tsurudome M, Ito M, Takebayashi S, et al.: Primary structure of the light chain of fusion regulatory protein-1/CD98/4F2 predicts a protein with multiple transmembrane domains that is almost identical to the amino acid transporter E16-1,2. J Immunol 1999;162:2462–2466.PubMedGoogle Scholar
  88. 88.
    Ohta H, Tsurudome M, Matsumura H, Koga Y, et al.: Molecular and biological characterization of fusion regulatory proteins (FRPs): anti-FRP mAbs induced HIV-mediated cell fusion via an integrin system. EMBO J 1994;13:2044–2055.PubMedGoogle Scholar
  89. 89.
    Warren AP, Patel K, Miyamoto Y, Wygant JN, Woodside DG, McIntyre BW: Convergence between CD98 and integrin-mediated T-lymphocyte co-stimulation. Immunol 2000;99:62–68.Google Scholar
  90. 90.
    Hemler ME, Mannion BA, Berditchevski F: Association of TM4SF proteins with integrins: relevance to cancer. Biochim Biophys Acta 1996;1287:67–71.PubMedGoogle Scholar
  91. 91.
    Mannion BA, Berditchehevski F, Kraeft S, Chen LB, Hemler ME: Transmembrane-4 superfamily proteins CD81 (TAPA-1), CD82, CD63, and CD53 specifically associate with integrin alpa-4-beta-1 (CD49d/CD29). J Immunol 1996;157:2039–2047.PubMedGoogle Scholar
  92. 92.
    Lagaudriere-Gesbert C, Le Naour F, Lebel-Binay S, et al.: Functional analysis of four tetraspans, CD9, CD53, CD81, and CD82 suggests a common role in costimulation, cell adhesion, and migration: only CD9 upregulates HB-EGF activity. Cell Immunol 1997;182:105–112.PubMedGoogle Scholar
  93. 93.
    Olweus J, Lund-Johansen F, Horejsi V: CD53, a protein with four membrane-spanning domains, mediates signal transduction in human monocytes and B cells. J Immunol 1993;151:707–716.PubMedGoogle Scholar
  94. 94.
    Berditchevski F, Zutter MM, Hemler ME: Characterization of novel complexes on the cell surface between integrins and proteins with 4 transmembrane domains (TM4 proteins). Molec Biol Cell 1996;7:193–207.PubMedGoogle Scholar
  95. 95.
    Skublitz KM, Campbell KD, Lida J, Skubitz APN: CD63 associates with tyrosine kinase activity and CD11/CD18, and transmits anactivation signal in neutrophils. J Immunol 1996;157:3617–3626.Google Scholar
  96. 96.
    Berditchevski F, Tolias KF, Wong K, Carpenter CL, Hemler ME: A novel link between integrins, transmemebrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. J Biol Chem 1997;272:2595–2598.PubMedGoogle Scholar
  97. 97.
    Lindberg FP, Gresham HD, Schwarz E, Brown EJ: Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in αvβ3-dependent ligand binding. J Cell Biol 1993;123:485–496.PubMedGoogle Scholar
  98. 98.
    Lindberg FP, Gresham HD, Reinhold MI, Brown EJ: Integrin-associated protein immunoglobulin domain is necessary for efficient vitronectin bead binding. J Cell Biol 1996;134:1313–1322.PubMedGoogle Scholar
  99. 99.
    Chung J, Gao A, Frazier A: Thromspondin acts via integrin-associated protein to activate the platelet integrin α11bβ3. J Biol Chem 1997;272:14,740–14,746.Google Scholar
  100. 100.
    Zhou M, Brown EJ: Leukocyte esponse integrin and integrin-associated protein act as a signal transduction unit in generation of aphagocyte respiration burst. J Exp Med 1993;178:1165–1174.PubMedGoogle Scholar
  101. 101.
    Green JM, Zhelesnyak A, Chung J, Lindberg FP, Sarfati M, Frazier WA, Brown EJ: Role of cholesterol informantion and function of a signaling complex involving alpha-v-beta-3, integrin-associated protein (CD47), and heterotrimeric G proteins. J Cell Biol 1999;146:673–682.PubMedGoogle Scholar
  102. 102.
    Wang X, Lindberg FP, Frazier WA: Integrin-associated protein stimulates α2β1-dependent chemotaxis via Gi-mediated inhibition of adenylate cyclase and extracellular-regulated kinases. J Cell Biol 1999;147:389–399.PubMedGoogle Scholar
  103. 103.
    Lindberg FP, Bullard DC, Caver TE, Gresham HD, Beaudet AL: Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice. Science 1996;274:795–801.PubMedGoogle Scholar
  104. 104.
    Simon SI, Cherapnov V, Nadra I, Waddell TK, Seo SM, Wang Q, Doerschuk CM, Downey GP: Sigraling functions of L-selectin in neutrophils: alterations in the cytoskeleton and colocalization with CD18. J Immunol 1999; 163:2891–2901.PubMedGoogle Scholar
  105. 105.
    Sundberg C, Rubin K: Stimulation of betal integrins on fibroblasts induces PDGF independent tyrosine phosphorylation of PDGF beta-receptors. J Cell Biol 1996; 132:741–752.PubMedGoogle Scholar
  106. 106.
    Schneller M, Vuori K, Ruoslahti E: αvβ integrin associates with activated insulin and PDGF (receptors and potentiates the biological activity of PDGF. EMBO J 1997; 16:5600–5607.PubMedGoogle Scholar
  107. 107.
    Inaba T, Shimano H, Gotoda T, et al.: Expression of platelet-derived growth factor beta receptor on human monocyte-derived macrophage and effects of platelet-derived growth factor BB dimmer on the cellular function. J Biol Chem 1993;268:24,353–24,360.Google Scholar
  108. 108.
    Sano H, Higashi T, Matsumoto K, et al.: Insulin enhances macro-phage scavenger receptor-mediated endocytic uptake of advanced glycation end products. J Biol Chem 1998;273:8630–8637.PubMedGoogle Scholar
  109. 109.
    Berditchevski F, Chang S, Bodorova J, Hemler ME: Generation of monoclonal antibodies to integrin-associated proteins. J Biol Chem 1997;272:29,174–29,180.Google Scholar
  110. 110.
    Anderson DC, Schmalstieg FC, Arnaout MA, et al.: Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of high molecular weight surface proteins (GPI 38): common relationship to diminished cell adherence. J. Clin. Invest. 1984;74:536–551.PubMedCrossRefGoogle Scholar
  111. 111.
    Kohl S, Loo LS, Schmalstieg FS, Anderson DC: The genetic deficiency of leukocyte surface glycoprotein Mac-1, LFA-1, p1150,95 in humans is associated with defective antibody-dependent cellular cytotoxicity in vitroand defective protection against herpes simplex virus infection in vivo. J. Immunol. 1986;137:1688–1694.PubMedGoogle Scholar
  112. 112.
    Tang T, Rosenkranz A, Assman KJM, et al.: A role for Mac-1 (CDIIb/CD18) in immune complex-stimulated neutrophil function in vivo: Mac-1 deficiency abrogales sustained Fcγ receptor-dependent neutrophil adhesion and complement-dependent proteinuria in acute glomeulonephritis. J Exp Med 1997;186:1853–1863.PubMedGoogle Scholar
  113. 113.
    Zhou M-J, Poo H, Todd RF, Petty HR: Surface-bound immune complexes trigger transmembrane proximity between complement receptor type III and the neutrophil's cortical microfiliments. J Immunol 1992;148: 3550–3553.PubMedGoogle Scholar
  114. 114.
    Kindzelskii AL, Yang Z, Nabel GJ, Todd III RF, Petty HR: Ebola virus secretory glycoprotein (sGP) disrupts FcγRIIIB to CR3 proximity on neutrophils. J Immunol 2000; 164:953–958.PubMedGoogle Scholar
  115. 115.
    Takada A, Watanabe S, Ito H, Okazaki K, Kida H, Kawaoka Y: Downregulation of betal integrins by ebola virus glycoproteins: implication for virus entry. Virol 2000;278:20–26.Google Scholar
  116. 116.
    Bouhlal H, Galon J, Kazatchkine MD, Fridman W, Sautes-Fridman C, Cavaillon NH: Soluble CD16 inhibits CR3 (CD1 1b/CD18)-mediated infection of monocytes/macrophages by opsonized primary R5HIV-1. J Immunol 2001; 166:3377–3383.PubMedGoogle Scholar
  117. 117.
    Peyron P, Bordier C, N'Diaye E, Maridonneau-Parini I: Nonopsonic phagocytosis of Mycobacterium kansasii by human neutrophils depends on cholesterol and ismediated by CR 3 associated with glycosyl phophatidy linosital-anchored proteins. J Immunol 2000;165:5186–5191.PubMedGoogle Scholar
  118. 118.
    Shaya S, Kindzelskii AL, Minor J, Moore EC, Todd III RF, Petty HR: Aberrant integrin (CR4; αxβ2; CD11c/CD18) oscillations on neutrophilsin amild form of pyoderma gangrenosum. J Invest Dermatol 1998;111:154–158.PubMedGoogle Scholar
  119. 119.
    Adachi Y, Kindzelskii AL, Cookingham G, et al.: Aberrant neutrophil trafficking and metabolic oscillations in severe pyoderma gangrenosum. J Invest Dermatol 1998;111:259–268.PubMedGoogle Scholar
  120. 120.
    Maxfield FR, Mayor S: Cell surface dynamics of GPI-anchored proteins. Adv Exp Med Biol 1997;419:355–364.PubMedGoogle Scholar
  121. 121.
    Rodgers W, Glaser M: Characterization of lipid domains in erythrocyte membranes. Proc Natl Acad Sci, USA 1991;88:1364–1368.PubMedGoogle Scholar
  122. 122.
    Sheets E, Lee GM, Simson R, Jacobson K: Transient confinement of a glycosyl phosphatidyli-nositol-anchored protein in the plasma membrane. Biochem; 36:12,449-12,458.Google Scholar

Copyright information

© Humana Press Inc 2002

Authors and Affiliations

  • Howard R. Petty
    • 1
    • 2
    • 3
  • Randall G. Worth
    • 1
    • 2
    • 3
  • Robert F. ToddIII
    • 1
    • 2
    • 3
  1. 1.Department of Biological SciencesWayne State UniversityDetroit
  2. 2.Division of Hematology/OncologyUniversity of Pennsylvania School of MedicinePhiladelphia
  3. 3.Division of Hematology/OncologyUniversity of Michigan School of MedicineAnn Arbor

Personalised recommendations