Immunologic Research

, Volume 24, Issue 1, pp 31–52 | Cite as

T cell signal transfuction and the role of CD7 in costimulation

  • Ross Stillwell
  • Barbara E. Bierer
Article

Abstract

The complex cellular interactions that govern the mammalian immune response are now known to include specific receptor/ligand interaction, recruitment of intracellular signaling molecules, activation of both k in ases and phosphatases, and redustribution of macro-molecular complexes into specific subcellular membrane locations that, in aggregate, result in transcriptional activation. While the TCR-CD3 signal is critical for activation of the resting T cell, it alone is not sufficient to initiate transcriptional activation or generate an effective immune response. A number of other coreceptor molecules, including CD4, CD8, and CD28, have now been characterized that also play important roles in initiating or amplifing the activation of the T cell. A 40 kDa member of the immunoglobulin superfamily, the CD7 molecule, has also been shown to have costimulatory activity and to induce tyrosine and lipid kinase activities. Here we will review the signaling pathways initiated by TCR, CD28, and CD7, as well as the functional consequences of signal transduction through these receptors.

Key words

T cell receptor CD3 CD7 CD28 Coreceptor Costimulation Lymphocyte signal transduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Qian D, Weiss A: T cell antigen receptor signal transduction. Curr Opin Cell Biol 1997;9(2):205–212.PubMedGoogle Scholar
  2. 2.
    Wange RL, Samelson LE: Complex complexes: signaling at the TCR. Immunity 1996;5(3): 97–205.Google Scholar
  3. 3.
    Bretscher P: The two-signal model of lymphocyte activation twenty-one years later. Immunol Today 1992;13(2):74–76.PubMedGoogle Scholar
  4. 4.
    Nonment AM, Salter RD, Parham P, Engelhard VH, Littman DR: Cell-cell adhesion mediated by CD8 and MHC class I molecules. Nature 1988;336(6194):79–81.Google Scholar
  5. 5.
    Veillette A, Bookman MA, Horak EM, Samelson LE, Bolen JB: Signal transduction through the CD4 receptor involves the activation of the intermal membrane tyrosine-protein kinase p56lck. Nature 1989;338(6212):257–259.PubMedGoogle Scholar
  6. 6.
    Chambers CA, Allison JP: Costimulatory regulation of T cell function. Curr Opin Cell Biol 1999;11(2):203–210.PubMedGoogle Scholar
  7. 7.
    Ward SG: CD28: a signalling per-specitive. Biochem J 1996;318(Pt 2):361–377.PubMedGoogle Scholar
  8. 8.
    Ashwell JD, Klausner RD: Genetic and mutational analysis of the T-cell antigen receptor. Ann Rev Immunol 1990;8:139–167.Google Scholar
  9. 9.
    Weissman AM: The T-cell antigen receptor: a multisubunit signaling complex. Chem Immunol 1994;59:1–18.PubMedCrossRefGoogle Scholar
  10. 10.
    Cambier JC: Antigen and Fc receptor signaling. The awesome power of the immuno receptor tyrosine-based activation motif (ITAM). J Immunol 1995;155(7):3281–3285.PubMedGoogle Scholar
  11. 11.
    Rudd CE: Adaptors and molecular scaffolds in immune cells signaling. Cell 1999;96(1):5–8.PubMedGoogle Scholar
  12. 12.
    Pawson T, Gish GD: SH2 and SH3 domains: from structure to function. Cell 1992;71(3):359–362.PubMedGoogle Scholar
  13. 13.
    Iwashima M, Irving BA, van Oers NS, Chan AC, Weiss A: Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 1994;263(5150):1136–1139.PubMedGoogle Scholar
  14. 14.
    van Oers NS, Killeen N, Weiss A: Lck regulates the tyrosine phosphorylation of the T cell receptor subunits and ZAP-70 in murine thymocytes. J Exp Med 1996; 183(3):1053–1062.PubMedGoogle Scholar
  15. 15.
    Shaw AS, Amerein KE, Hammond C, Stern DF, Sefton BM, Rose JK: The lck tyrosine protein kinase interacts with the cytoplasmic tail of the CD4 glycoprotein through its unique amino-terminal domain. Cell 1989;59(4):627–636.PubMedGoogle Scholar
  16. 16.
    Shaw AS, Chalupmy J, Whitney JA, Hammond C, Amrein KE, Kavathas P, et al.: Short related sequences in the cytoplasmic domains of CD4 and CD8 mediate binding to the amino-terminal domain of the p56 lck tyrosine protein kinase. Mol Cell Biol 1990;10(5):1853–1862.PubMedGoogle Scholar
  17. 17.
    Turner JM, Brodsky MH, Irving BA, Levin SD, Perlmutter RM, Littman DR: Interaction of the unique N-terminal region of tyrosine kinase p561ck with cytoplasmic domains of CD4 and CD8 is mediated by cystein motifs. Cell 1990;60(5):755–765.PubMedGoogle Scholar
  18. 18.
    Exley M, Varticovski L, Peter M, Sancho J, Terhorst C: Association of phosphatidylinositol 3-kinase with a specific sequence of the T cell receptor zeta chain is dependent on T cell activation. J Biol Chem 1994;269(21): 15,140–15,146.Google Scholar
  19. 19.
    Isakov N, Wange RL, Burgess WH, Watts JD, Aebersold R, Samelson LE: ZAP-70 binding specificity to T cell receptor tyrosine-basedactivation motifs: the tandem SH2 domains of ZAP-70 bind distinct tyrosine-based activation motifs with varying affinity. J Exp Med 1995;181(1):375–380.PubMedGoogle Scholar
  20. 20.
    Osman N, Lucas SC, Turner H, Cantrell D: A comparison of the interaction of Shc and the tyrosine kinase ZAP-70 with the T cell antigen receptor zeta chain tyrosine-based activation motif. J Biol Chem 1995;270(23):13,981–13,986.Google Scholar
  21. 21.
    Chan AC, Dalton M, Johnson R, Kong GH, Wang T, Thoma R, et al.: Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. EMBO J 1995;14(11):2499–2508.PubMedGoogle Scholar
  22. 22.
    Yang WC, Ghiotto M, Barbarat B, Olive D: The role of the Tec protein-tyrosine kinase in T cell signaling. J Biol Chem 1999;274(2): 607–617.PubMedGoogle Scholar
  23. 23.
    Yang WC, Collette Y, Nunes JA, Olive D: Tec kinases: a family with multipleroles in immunily. Immunity 2000;12(4):373–382.PubMedGoogle Scholar
  24. 24.
    Plas DR, Thomas ML: Negative regulation of antigen receptorsignaling in lymphocytes. J Mol Med 1998;76(8):589–595.PubMedGoogle Scholar
  25. 25.
    Liu KQ, Bunnell SC, Gurniak CB, Berg LJ: T cell receptor-initiated calcium release is uncoupled from capacitive calcium entry in Itkdeficient T cells. J Exp Med 1998;187(10):1721–1727.PubMedGoogle Scholar
  26. 26.
    Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE: LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 1998;92(1):83–92.PubMedGoogle Scholar
  27. 27.
    Clements JL, Koretzky GA: Recent developments in lymphocyte activation: linking kinases to down-stream signaling events. J Clin Invest 1999;103(7):925–929.PubMedGoogle Scholar
  28. 28.
    Finco TS, Kadlecek T, Zhang W, Samelson LE, Weiss A. LAT is required for TCR-mediated activation of PLC gammal and the Ras pathway. Immunity 1998;9(5):617–626.PubMedGoogle Scholar
  29. 29.
    Zhang W, Irvin BJ, Trible RP, Abraham RT, Samelson LE: Functional analysis of LAT in TCR-mediated sigraling pathwaysusing a LAT-deficient Jurkat cell line. Int Immunol 1999;11:943–950.PubMedGoogle Scholar
  30. 30.
    Zhang W, Trible RP, Zhu M, Liu SK, McGlade CJ, Samelson LE: Association of Grb2, Gads and phospholipase C-γl with phosphorylated LAT tyrosine residues. Effect of tyrosine mutations on T cell antigen receptor-mediated signaling. J Biol Chem 2000;275(30):23,355–23,361.Google Scholar
  31. 31.
    Ravichandran KS, Lee KK, Songyang Z, Cantley LC, Burn P, Burakoff SJ: Interaction of She with the zeta chain of the T cell receptorupon T cell activation. Science 1993;262(5135):902–905.PubMedGoogle Scholar
  32. 32.
    Ravichandran KS, Lorenz U, Shoelson SE, Burakoff SJ: Interaction of She with Grb2 regulates association of Grb2 with mSOS. Mol Cell Biol 1995;15(2):593–600.PubMedGoogle Scholar
  33. 33.
    Pratt JC, Sawasdikosol S, van den Brink MR, Burakoff SJ: Postive and negative signaling pathways. Transplant Proc 1999;31(1–2): 772–774.PubMedGoogle Scholar
  34. 34.
    Jackman JK, Motto DG, Sun Q, Tanemoto M, Turck CW, Peltz GA, et al.: Molecular cloning of SLP-76, a 76-kDa tyrosine phosphoprotein associated with Grb2 in T cells. J Biol Chem 1995;270(13):7029–7032.PubMedGoogle Scholar
  35. 35.
    da Silva AJ, Li Z, de Vera C, Canto E, Findell P, Rudd CE: Cloning of a novel T-cell protein FYB that binds FYN and SH2-domain-containing leukocyte protein 76 and modulates interleukin 2 production. Proc Natl Acad Sci USA 1997;94(14):7493–7498.PubMedGoogle Scholar
  36. 36.
    Liu SK, Fang N, Koretzky GA, McGlade CJ: The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr Biol 1999; 9(2):67–75.PubMedGoogle Scholar
  37. 37.
    McFarland ED, Hurley TR, Pingel JT, Selton BM, Shaw A, Thomas ML: Correlation between Src family member regulation by the protein-tyrosine-phosphatase CD45 and transmembrane signaling through the T-cell receptor. Proc Natl Acad Sci USA 1993; 90(4):1402–1406.Google Scholar
  38. 38.
    Plas DR, Johnson R, Pingel JT, Matthews RJ, Dalton M, Roy G, et al.: Direct regulation of ZAP-70 by SHP-1 in T cell antigen receptor signaling. Science 1996; 272(5265):1173–1176.PubMedGoogle Scholar
  39. 39.
    Shultz LD, Schweitzer PA, Rajan TV, Yi T, Ihle JN, Matthews RJ, et al.: Mutations at the murine motheaten locus are within the hemato poietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 1993;73(7):1445–1454.PubMedGoogle Scholar
  40. 40.
    Marengere LE, Waterhouse P, Duncan GS, Mittrucker HW, Feng GS, Mak TW: Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 1996; 272(5265):1170–1173.PubMedGoogle Scholar
  41. 41.
    Saito T: Negative regulation of T cell activation. Curr Op Immunol 1998;10(3):313–321.Google Scholar
  42. 42.
    Garrington TP, Johnson GL: Organization and regulation of nitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 1999;11(2):211–218.PubMedGoogle Scholar
  43. 43.
    Hardy K, Chaudhri G: Activation and signal transduction via mitogen-activated protein (MAP) kinases in T lymphocytes. Immunol Cell Biol 1997;75(6):528–545.PubMedGoogle Scholar
  44. 44.
    Su B, Karin M: Mitogen-activated protein kinase cascades and regulation of gene expression. Curr Op Immunol 1996;8(3):402–411.Google Scholar
  45. 45.
    Genot E, Reif K, Beach S, Kramer I, Cantrell D: p21 Iras initiates Rac-1 but not phosphatidyl inositol 3 kinase/PKB, mediated signaling pathways in T lymphocytes. Oncogene 1998;17(13):1731–1738.PubMedGoogle Scholar
  46. 46.
    Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H, et al.: Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature 1993;364(6434): 249–252.PubMedGoogle Scholar
  47. 47.
    Whitehurst CE, Geppert TD: MEK1 and the extracellular signal-regulated kinases are required for the stimulation of IL-2 gene transcription in T cells. J Immunol 1996;156(3):1020–1029.PubMedGoogle Scholar
  48. 48.
    Cantrell D: T cell antigen receptor signal transduction pathways. Annu Rev Immunol 1996;14:259–274.PubMedGoogle Scholar
  49. 49.
    Ullman KS, Northrop JP, Verweij CL, Crabtree GR: Transmission of signals from the T lymphocyte antigen receptor to the genes responsible for cell proliferation and immune function: the missing link. Annu Rev Immunol 1990;8:421–452.PubMedGoogle Scholar
  50. 50.
    Marais R, Wyme J, Treisman R: The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 1993;73(2):381–393.PubMedGoogle Scholar
  51. 51.
    Faris M, Kokot N, Lee L, Nel AE: Regulation of interleukin-2 transcription by inducible stable expression of dominant negative and dominant active mitogen-activated protein kinase kinase kinase in Jurkat T cells. Evidence for the importance of Ras in a pathway that is controlled by dual receptor stimulation. J Biol Chem 1996;271(44):27,366–27,373.Google Scholar
  52. 52.
    Zhang J, Salojin KV, Gao JX, Cameron MJ, Bergerot I, Delovitch TL: p38 mitogen-activated protein kinase mediates signal integration of TCR/CD28-costimulation in primary murine T cells. J Immunol 1999;162(7):3819–3829.PubMedGoogle Scholar
  53. 53.
    Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M: Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 1991;354(6353):494–496.PubMedGoogle Scholar
  54. 54.
    Su B, Jacinto E, Hibi M, Kallunki T, Karin M, Ben-Neriah Y: JNK is involved in signal integration during costimulation of T lymphocytes. Cell 1994;77(5): 727–736.PubMedGoogle Scholar
  55. 55.
    Crabtree GR, Clipstone NA: Signal transmission between the plasma membrane and nucleus of T lymphocytes. Annu Rev Biochem 1994;63:1045–1083.PubMedGoogle Scholar
  56. 56.
    Viola JP, Rao A: Molecular regulation of cytokine gene expression during the immune response. J Clin Immunol 1999;19(2):98–108.PubMedGoogle Scholar
  57. 57.
    Rincon M, Enslen H, Raingeaud J, Recht M, Zapton T, Su MS, et al.: Interferon-gamma expression by Thl effector T cells mediated by the p38 MAP kinase signaling pathway. EMB O J 1998;17(10): 2817–2829.Google Scholar
  58. 58.
    Kapeller R, Cantley LC: Phosphatidylinositol 3-kinase. Bioessays 1994;16(8):565–576.PubMedGoogle Scholar
  59. 59.
    Leevers SJ, Vanhaesebroeck B, Waterfield MD: Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 1999;11(2):219–225.PubMedGoogle Scholar
  60. 60.
    Fruman DA, Meyers RE, Cantley LC: Phosphoinositide kinases. Annu Rev Biochem 1998;67: 481–507.PubMedGoogle Scholar
  61. 61.
    Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD: Phosphoinositide 3-kinases: a conserved family of signal transducters. Trends Biochem Sci 1997: 22(7):267–272.PubMedGoogle Scholar
  62. 62.
    Hu Q, Klippel A, Muslin AJ, Fantl WJ, Williams LT: Ras-dependent induction of cellular responses by constitutively active phosphatidylinositol-3 kinase. Science 1995;268(5207):100–102.PubMedGoogle Scholar
  63. 63.
    Marte BM, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J: R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways. Curr Biol 1997;7(1):63–70.PubMedGoogle Scholar
  64. 64.
    Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, et al.: Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 1994;370 (6490):527–532.PubMedGoogle Scholar
  65. 65.
    Salim K, Bottomley MJ, Querfurth E, Zvelebil MJ, Gout I, Scaife R, et al.: Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. EMBO J 1996; 15(22):6241–6250.PubMedGoogle Scholar
  66. 66.
    Rameh LE, Chen CS, Cantley LC: Phosphatidylinositol (3,4,5)P3 interacts with SH2 domains and modulates PI 3-kinase association with tyrosine-phosphorylated proteins. Cell 1995;83(5):821–830.PubMedGoogle Scholar
  67. 67.
    Corvera S, Czech MP: Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol 1998;8(11):442–446.PubMedGoogle Scholar
  68. 68.
    Wiedemann C, Cockeroft S: Vesicular transport. Sticky fingers grab a lipid. Nature 1998;394(6692): 426–427.PubMedGoogle Scholar
  69. 69.
    Hemmings BA: PH domains—a universal membrane adapter. Science 1997;275(5308):1899.PubMedGoogle Scholar
  70. 70.
    Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378(6559):785–789.PubMedGoogle Scholar
  71. 71.
    Marte BM, Downward J: PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 1997; 22(9):355–358.PubMedGoogle Scholar
  72. 72.
    Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al.: Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91(2):231–241.PubMedGoogle Scholar
  73. 73.
    del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G: Interleukin-3-induced phosphorylation of BAD through the protein kinase. Akt. Science 1997;278(5338): 687–689.Google Scholar
  74. 74.
    Brennan P, Babbage JW, Burgering BM, Groner B, Reif K, Cantrell DA: Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity 1997;7(5):679–689.PubMedGoogle Scholar
  75. 75.
    Brennan P, Babbage JW, Thomas G, Cantrell D: p70(s6k) integrates phosphatidylinositol 3-kinase and rapamycin-regulated signals for E2F regulation in T lymphocytes. Mol Cell Biol 1999;19(7): 4729–4738.PubMedGoogle Scholar
  76. 76.
    Han J, Luby-Phelps K, Das B, Shu X, Xia Y, Mosteller RD, et al.: Role of substrates and products of PI 3-kinase inregulating activation of Rac-related guanosine triphosphatases by Vav. Science 1998; 279(5350):558–560.PubMedGoogle Scholar
  77. 77.
    Greenfield EA, Nguyen KA, Kuchroo VK: CD 28/B7 costimulation: a review. Crit Rev Immunol 1998;18(5):389–418.PubMedGoogle Scholar
  78. 78.
    June CH, Bluestone JA, Nadler LM, Thompson CB: The B7 and CD28 receptor families. Immunol Today 1994;15(7):321–331.PubMedGoogle Scholar
  79. 79.
    Prasad KV, Cai YC, Raab M, Duckworth B, Cantley L, Shoelson SE, et al.: T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyn(P)-Met-Xaa-Met motif. Proc Natl Acad Sci USA 1994;91(7):2834–2838.PubMedGoogle Scholar
  80. 80.
    Truitt KE, Hicks CM, Imboden JB: Stimulation of CD28 triggers an association between CD28 and phosphatidylinositol 3-kinase in Jurkat T cells. J Exp Med 1994; 179(3):1071–1076.PubMedGoogle Scholar
  81. 81.
    Jutchcroft JE, Bierer BE: Activation-dependent phosphorylation of the T-lymphocyte surface receptor CD28 and associated proteins. Proc Natl Acad Sci USA 1994; 91(8):3260–3264.Google Scholar
  82. 82.
    Raab M, Cai YC, Bunnell SC, Heyeck SD, Berg LJ, Rudd CE: p56Lckandp59Fyn regulate CD28 binding to phosphatidy linositol 3-kinase, growth factor receptor-bound protein-tyrosine kinase ITK: implications for T-cell costimulation. Proc Natl Acad Sci USA 1995;92(19):8891–8895.PubMedGoogle Scholar
  83. 83.
    August A, Gibson S, Kawakami Y, Kawakami T, Mills GB, Dupont B: CD28 is associated with and induces the immediate tyrosine phosphorylation and activation of the Tec family kinase ITK/EMT in the human Jurkat leukemic T-cell line. Proc Natl Acad Sci USA 1994;91(20):9347–9351.PubMedGoogle Scholar
  84. 84.
    Ward SG, Westwick J, Hall ND, Sansom DM: Ligation of CD28 receptor by B7 induces formation of D-3 phosphoinositides in T lymphocytes independently of T cell receptor/CD3 activation. Eur J Immunol 1993;23(10): 2572–2577.PubMedGoogle Scholar
  85. 85.
    Ueda Y, Levine BL, Huang ML, Freeman GJ, Nadler LM, June CH, et al.: Both CD28 ligands CD80 (CD80) and CD 86 (CD86) activate phosphatidylinositol 3-kinase, and wortmannin reveals heterogeneity in the regulation of T cell IL-2 secretion. Int Immunol 1995: 7(6):957–966.PubMedGoogle Scholar
  86. 86.
    Parry RV, Reif K, Smith G, Sansom DM, Hemmings BA, Ward SG: Ligation of the T cellco-stimulatory receptor CD28 activates the serine-threonine protein kinase protein kinase B. Eur J Immunol 1997; 27(10):2495–2501.PubMedGoogle Scholar
  87. 87.
    Gimmi CD, Freeman GJ, Gribben JG, Sugita K, Freedman AS, Morimoto C, et al.: B-cell surface antigen B7 provides a costimulatory signal that induces T cells to proliferate and secrete interleukin 2. Proc Natl Acad Sci USA 1991: 88(15):6575–6579.PubMedGoogle Scholar
  88. 88.
    Linsley PS, Brady W, Grosmaire L, Aruffo A, Damle NK, Ledbetter JA: Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med 1991;173(3): 721–730.PubMedGoogle Scholar
  89. 89.
    Schwartz RH: A cell culture model for T lymphocyte clonal anergy. Science 1990;248(4961): 1349–1356.PubMedGoogle Scholar
  90. 90.
    Schwartz RH: T cell clonal anergy. Curr Op Immunol 1997;9(3): 351–357.Google Scholar
  91. 91.
    Watowich SS, Wu H, Socolovsky M, Klingmuller U, Constantinescu SN, Lodish HF: Cytokine receptor signal transduction and the control of hematopoietic cell development. Annu Rev Cell Develop Biol 1996;12:91–128.Google Scholar
  92. 92.
    de Boer M, Kasran A, Kwekkeboom J, Walter H, Vandenberghe P, Ceuppens JL: Ligation of B7 with CD28/CTLA-4 on T cells results in CD40 ligand expression, interleukin-4 secretion and efficient help for antibody production by B cells. Eur J Immunol 1993;23(12):3120–3125.PubMedGoogle Scholar
  93. 93.
    Minty A, Chalon P, Derocq JM, Dumont X, Guillemot JC, Kaghad M, et al.: Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature 1993;362 (6417):248–250.PubMedGoogle Scholar
  94. 94.
    Seder RA, Germain RN, Linsley PS, Paul WE: CD28-mediated costimulation of interleukin 2 (IL-2) production plays a critical role in T cell priming for IL-4 and interferon gamma production. J Exp Med 1994;179(1):299–304.PubMedGoogle Scholar
  95. 95.
    Thompson CB, Lindsten T, Ledbetter JA, Kunkel SL, Young HA, Emerson SG, et al.: CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proc Natl Acad Sci USA 1989;86(4): 1333–1337.PubMedGoogle Scholar
  96. 96.
    Wechsler AS, Gordon MC, Dendorfer U, LeClair KP: Induction of IL-8 expression in T cells uses the CD28 costimulatory pathway. J Immunol 1994;153(6):2515–2523.PubMedGoogle Scholar
  97. 97.
    Schweitzer AN, Sharpe AH: The complexity of the B7-CD28/CTLA-4 costimulatory pathway. Agents & Actions—Supplements 1998;49:33–43.Google Scholar
  98. 98.
    Freeman GJ, Boussiotis VA, Anumanthan A, Bernstein GM, Ke XY, Rennert PD, et al.: CD80 and CD86 do not deliver identical costimulatory signals, since CD86 but not CD80 preferentially costimulates the inital production of IL-4. Immunity 1995;2(5):523–532.PubMedGoogle Scholar
  99. 99.
    Kuchroo VK, Das MP, Brown JA, Ranger AM, Zamvil SS, Sobel RA, et al.: CD80 and CD86 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell 1995;80(5):707–718.PubMedGoogle Scholar
  100. 100.
    Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, et al.: CTLA-4 canfunction as a negative regulator of T cell activation. Immunity 1994; 1(5):405–413.PubMedGoogle Scholar
  101. 101.
    Mosmann TR, Coffman RL: TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989;7: 145–173.PubMedGoogle Scholar
  102. 102.
    Miyatake S, Nakaseko C, Umemori H, Yamamoto T, Saito T: Sfc family tyrosine kinases associate with and phosphorylate CTLA-4 (CD152). Biochem Biophys Res Comm 1998;249(2):444–448.PubMedGoogle Scholar
  103. 103.
    Schneider H, Prasad KV, Shoelson SE, Rudd CE: CTLA-4 binding to the lipid kinase phosphatidylinositol 3-kinase in T cells. J Exp Med 1995;181(1):351–355.PubMedGoogle Scholar
  104. 104.
    Marengere LE, Okkenhaug K, Clavreul A, Couez D, Gibson S, Mills GB, et al.: The SH3 domain of Itk/Emt binds to proline-rich sequences in the cytoplasmic domain of the T cell costimulatory receptor CD28. J Immunol 1997;159(7):3220–3229.PubMedGoogle Scholar
  105. 105.
    Zhang Y, Allison JP: Interaction of CTLA-4 with AP50, a clathrincoated pit adaptor protein. Proc Natl Acad Sci USA 1997; 94(17):9273–9278.PubMedGoogle Scholar
  106. 106.
    Slavik JM, Hutchcroft JE, Bierer BE: CD80 and CD 86 are not equivalent in their ability to induce the tyrosine phosphorylation of CD28. J Biol Chem 1999;274(5): 3116–3124.PubMedGoogle Scholar
  107. 107.
    Lenschow DJ, Walunas TL, Bluestone JA: CD 28/B7 system of T cell costimulation. Annu Rev Immunol 1996;14:233–258.PubMedGoogle Scholar
  108. 108.
    Boise LH, Minn AJ, Noel PJ, June CH, Accavitti MA, Lindsten T, et al.: CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 1995;3(1):87–98.PubMedGoogle Scholar
  109. 109.
    Collette Y, Razanajaona D, Ghiotto M, Olive D: CD28 can promote T cell survival through a phosphatidy linositol 3-kinase-independent mechanism. Eur J Immunol 1997;27(12):3283–3289.PubMedGoogle Scholar
  110. 110.
    Sperling AI, Auger JA, Ehst BD, Rulifson IC, Thompson CB, Bluestone JA: CD 28/B7 interactions deliver a unique signal to naive T cells that regulates cell survival but not early proliferation. J Immunol 1996;157(9):3909–3917.PubMedGoogle Scholar
  111. 111.
    Van Parijs L, Ibraghimov A, Abbas AK: The roles of costimulation and Fas in T cell apoptosis and peripheral tolerance. Immunity 1996; 4(3):321–328.PubMedGoogle Scholar
  112. 112.
    Rafaeli Y, Van Parijs L, London CA, Tschopp J, Abbas AK: Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 1998;8(5): 615–623.Google Scholar
  113. 113.
    Van Parijs L, Abbas AK: Homeostasis and self-tolerance in the immume system: turning lymphocytes off. Science 1998;280(5361): 243–248.PubMedGoogle Scholar
  114. 114.
    Adams JM, Cory S: The Bcl-2 protein family: arbiters of cell survival. Science 1998;281(5381):1322–1326.PubMedGoogle Scholar
  115. 115.
    Viola A, Lanzavecchia A: T cell activation determined by T cell receptor number and tunable thresholds. Science 1996;273 (5271):104–106.PubMedGoogle Scholar
  116. 116.
    Shaw AS, Dustin ML: Making the T cell receptor go the distance: a topological view of T cell activation. Immunity 1992;6(4): 361–369.Google Scholar
  117. 117.
    Simons K, Ikonen E: Functional rafts in cell membranes. Nature 1997;387(6633):569–572.PubMedGoogle Scholar
  118. 118.
    Zhang W, Trible RP, Samelson LE: LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 1998;9(2):239–246.PubMedGoogle Scholar
  119. 119.
    Dustin ML, Shaw AS: Costimulation: building an immunological synapse. Science 1999;283(5402): 649–650.PubMedGoogle Scholar
  120. 120.
    Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A: T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 1999;283(5402): 680–682.PubMedGoogle Scholar
  121. 121.
    Wulfing C, Davis MM: A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 1998; 282(5397):2266–2269.PubMedGoogle Scholar
  122. 122.
    Boyce NW, Jonsson JI, Emmrich F, Eichmann K: Heterologous cross-linking of Lyt-2 (CD8) to the alpha beta-T cell receptor is more effective in T cell activation than homologous alpha beta-T cell receptor cross-linking. J Immunol 1988;141(9):2882–2888.PubMedGoogle Scholar
  123. 123.
    Owens T, Fazekas de St. Groth B, Miller JF: Coaggregation of the T-cell receptor with CD4 and other T-cell surface molecules enhances T-cell activation. Proc Natl Acad Sci USA 1987;84(24):9209–9213.PubMedGoogle Scholar
  124. 124.
    Zamoyska R: CD4 and CD8: modulators of T-cell receptor recognition of antigen and of immune responses? Curr Op Immunol 1998;10(1):82–87.Google Scholar
  125. 125.
    Abraham N, Miceli MC, Parnes JR, Veillette A: Enhancement of T-cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56lck. Nature 1991;350 (6313):62–66.PubMedGoogle Scholar
  126. 126.
    Jonsson JI, Boyce NW, Eichmann K: Immunoregulation through CD8 (Ly-2): state of aggregation with the alpha/beta/CD3 T cell receptor controls interleukin 3-dependent T cell growth. Eur J Immunol 1989;19(2):253–260.PubMedGoogle Scholar
  127. 127.
    Oberg HH, Sanzebacher R, Lengl-Janssen B, Dobmeyer T, Flindt S, Janssen O, et al.: Ligation of cell surface CD4 inhibits activation-induced death of human T lymphocytes at the level of Fas ligand expression. J Immunol 1997;159(11):5742–5749.PubMedGoogle Scholar
  128. 128.
    Bierer BE, Hahn WC: T cell adhesion, avidity regulation, and signaling: a molecular analysis of CD2. Semin Immunol 1993; 5(4):249–261.PubMedGoogle Scholar
  129. 129.
    Holler W, Schwarz M, Cerwenka A, Knapp W: The role of CD2 as a regulator of human T-cell cytokine production. Immunol Rev 1996;153:107–122.Google Scholar
  130. 130.
    Bierer BE, Peterson A, Gorga JC, Hermann SH, Burakoff SJ: Synergistic T cell activation via the physiological ligands for CD2 and the T cell receptor. J Exp Med 1988;168(3):1145–1156.PubMedGoogle Scholar
  131. 131.
    Boussiotis VA, Freeman GJ, Griffin JD, Gray GS, Gribben JG, Nadler LM: CD2 is involved in maintenance and reversal of human alloantigen-specific clonal anergy. J Exp Med 1994;180(5): 1665–1673.PubMedGoogle Scholar
  132. 132.
    Lin H, Hutchcroft JE, Andoniou CE, Kamoun M, Band H, Bierer BE: Association of p59(fyn) with the T lymphocyte costimulatory receptor CD2. Binding of the Fyn Src homology (SH) 3 domain is regulated by the Fyn SH2 domain. J Biol Chem 1998;273(31): 19,914–19,921.Google Scholar
  133. 133.
    Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, et al.: ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 1999; 397(6716):263–266.PubMedGoogle Scholar
  134. 134.
    Kopf M, Coyle AJ, Schmitz N, Barner M, Oxenius A, Gallimore A, et al.: Inducible costimulator protein (ICOS) controls T helper cell subset polarization after virus and parasite infection. J Exp Med 2000;192(1):53–61.PubMedGoogle Scholar
  135. 135.
    Abbas AK, Sharpe AH: T-cell stimulation: an abundace of B7s. Nat Med 1999;5(12):1345–1346.PubMedGoogle Scholar
  136. 136.
    Brodie D, Collins AV, Iaboni A, Fennelly JA, Sparks LM, Xu X-N, et al.: LICOS, a primordial costimulatory ligand? Curr Biol 2000;10:333–336.PubMedGoogle Scholar
  137. 137.
    Akiba H, Oshima H, Takeda K, Atsuta M, Nakano H, Nakajima A, et al.: CD28-independent costimulation of T cells by OX40 ligand and CD70 on activated B cells. J Immunol 1999;162(12): 7058–7066.PubMedGoogle Scholar
  138. 138.
    Park CS, Yashiro Y, Tai XG, Toyooka K, Hamaoka T, Yagita H, et al.: Differential involvement of a Fas-CPP32-like protease pathway in apoptosis of TCR/CD9-costimulated, naive T cells and TCR-restimulated, activated T cells. J Immunol 1998;160(12): 5790–5796.PubMedGoogle Scholar
  139. 139.
    Gringhuis SI, de Leij LF, Coffer PJ, Vellenga E: Signaling through CD5 activates a pathway involving phosphatidylinositol 3-kinase, Vav, and Rac1 in human mature T lymphocytes. Mol Cell Biol 1998;18(3):1725–1735.PubMedGoogle Scholar
  140. 140.
    Carrera AC, Rincon M, Sanchez-Madrid F, Lopez-Botet M, de Landazuri MO: Triggering of co-mitogenic signals in T cell proliferation by anti-LFA-1 (CD18, CD11a), LFA-3, and CD7 monoclonal antibodies. J Immunol 1988;141(6):1919–1924.PubMedGoogle Scholar
  141. 141.
    Jung LK, Roy AK, Chakkalath HR: CD7 augments T cell proliferation via the interleukin-2 autocrine pathway. Cell Immunol 1992; 141(1):189–199.PubMedGoogle Scholar
  142. 142.
    Shimizu Y, van Seventer GA, Ennis E, Newman W, Horgan KJ, Shaw S: Crosslinking of the T cell-specificaccessory molecules CD7 and CD28 modulates T cell adhesion. J Exp Med 1992;175(2):577–582.PubMedGoogle Scholar
  143. 143.
    Sutherland DR, Rudd CE, Greaves MF: Isolation and characterization of a human T lymphocyte-associated glycoprotein (gp40). J Immunol 1984;133(1):327–333.PubMedGoogle Scholar
  144. 144.
    Lazarovits AI, Osman N, Le Feuvre CE, Ley SC, Crumpton MJ: CD7 is associated with CD3 and CD45 on human T cells. J Immunol 1994;153(9):3956–3966.PubMedGoogle Scholar
  145. 145.
    Aruffo A, Seed B: Molecular cloning of two CD7 (T-cell leukemia antigen) cDNAs by a COS cell expression system. EMBO J 1987;6(11):3313–3316.PubMedGoogle Scholar
  146. 146.
    Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, et al.: SH2 domains recognize specific phosphopeptide sequences. Cell 1993;72(5): 767–778.PubMedGoogle Scholar
  147. 147.
    Chan AS, Mobley JL, Fields GB, Shimizu Y: CD7-mediated regulation of integrin adhesiveness on human T cells involves tyrosine phosphorylation-dependent activation of phosphatidylinositol 3-kinase. J Immunol 1997;159(2): 934–942.PubMedGoogle Scholar
  148. 148.
    Lee DM, Patel DD, Pendergast AM, Haynes BF: Functional association of CD7 with phosphatidylinositol 3-kinase: interaction via a YEDM motif. Int Immunol 1996;8(8):1195–1203.PubMedGoogle Scholar
  149. 149.
    Ward SG, Parry R, LeFeuvre C, Sansom DM, Westwick J, Lazarovits AI: Antibody ligation of CD7 leads to association with phosphoinositide 3-kinase and phosphatidylinositol 3,4,5-trisphosphate formation in T lymphocytes. Eur J Immunol 1995;25(2): 502–507.PubMedGoogle Scholar
  150. 150.
    Chan AS, Reynolds PJ, Shimizu Y: Tyrosine kinase activity associated with the CD7 antigen: correlation with regulation of T cell integrin function. Eur J Immunol 1994; 24(11):2602–2608.PubMedGoogle Scholar
  151. 151.
    Haynes BF, Eisenbarth GS, Fauci AS: Human lymphocyte antigens: production of a monoclonal antibody that defines functional thymus-derived lymphocyte subsets. Proc Natl Acad Sci USA 1979;76(11):5829–5833.PubMedGoogle Scholar
  152. 152.
    Haynes BF: Human T lymphocyte antigens as defined by monoclonal antibodies. Immunol Rev 1981; 57:127–161.PubMedGoogle Scholar
  153. 153.
    Morishima Y, Kobayashi M, Yang SY, Collins NH, Hoffmann MK, Dupont B: Functionally different T lymphocyte subpopulations determined by their sensitivity to complement-dependent cell lysis with the monoclonal antibody 4A. J Immunol 1982;129(3):1091–1098.PubMedGoogle Scholar
  154. 154.
    Lobach DF, Hensley LL, Ho W, Haynes BF: Human T cell antigen expression during the early stages of fetal thymic maturation. J Immunol 1985;135(3): 1752–1759.PubMedGoogle Scholar
  155. 155.
    Chabannon C, Wood P, Torok-Storb B: Expression of CD7 on normal human myeloid progenitors. J Immunol 1992;149(6): 2110–2113.PubMedGoogle Scholar
  156. 156.
    Grumayer ER, Griesinger F, Hummell DS, Brunning RD, Kersey JH: Identification of novel B-lineage cells in human fetal bone marrow that coexpress CD7. Blood 1991;77(1):64–68.PubMedGoogle Scholar
  157. 157.
    Reinhold U, Liu L, Sesterhenn J, Abken H: CD7-negative T cells representaseparate differentiation pathway in a subset of post-thymic helper T cells. Immunology 1996;89(3):391–396.PubMedGoogle Scholar
  158. 158.
    Akbar AN, Salmon M, Janossy G: The synergy between naive and memory T cells during activation. Immunol Today 1991;12(6): 184–188.PubMedGoogle Scholar
  159. 159.
    Haynes BF, Denning SM, Singer KH, Kurtzberg J: Ontogeny of T-cell precursors: a model for the initialstages of human T-cell development. Immunol Today 1989; 10(3):87–91.PubMedGoogle Scholar
  160. 160.
    Preffer FI, Kim CW, Fischer KH, Sahga EM, Kradin RL, Colvin RB: Identification of pre-T cells in human peripheral blood Extrathymic differentiation of CD7+CD3- cells into CD3-gamma/delta+ or alpha/beta+ T cells. J Exp Med 1989;170(1): 177–190.PubMedGoogle Scholar
  161. 161.
    Ware RE, Haynes BF: T cell CD7 mRNA expression is regulated by both transcriptional and post-transcriptional mechanisms. Int Immunol 1993;5(2):179–187.PubMedGoogle Scholar
  162. 162.
    Rincon M, Tugores A, Lopez-Botet M: Cyclic AMP and calcium regulate at a transcriptional level the expression of the CD7 leukocyte differentiation antigen. J Biol Chem 1992;267(25):18,026–18,031.Google Scholar
  163. 163.
    Davis AL, McKenzie JL, Hart DN: HLA-DR-positive leucocyte subpopulations in human skin include dendritic cells, macrophages, and CD7-negative T cells. Immunology 1988;65(4):573–581.PubMedGoogle Scholar
  164. 164.
    Dummer R, Nestle FO, Niederer E, Ludwig E, Laine E, Grundmann H, et al.: Genotypic, phenotypic and functional analysis of CD4+ CD7+ and CD4+CD7-T lymphocyte subsets in Sezary syndrome. Arch Dermatol Res 1999;291(6): 307–311.PubMedGoogle Scholar
  165. 165.
    Legac E, Autran B, Merle-Beral H, Katlama C, Debre P: CD4+ CD7-CD57+ T cells: a new T-lymphocyte subset expanded during human immunodeficiency virus infection. Blood 1992;79(7): 1746–1753.PubMedGoogle Scholar
  166. 166.
    Sato AI, Balamuth FB, Ugen KE, Williams WV, Weiner DB: Identification of CD7 glycoproteinas an accessory molecule in HIV-I-mediated syncytium formation and cellfree infection. J Immunol 1994;152(10):5142–5152.PubMedGoogle Scholar
  167. 167.
    Jung LK, Fu SM, Hara T, Kapoor N, Good RA: Defective expression of T cell-associated glycoprotein in severe combined immunodeficiency. J Clin Invest 1986;77(3): 940–946.PubMedCrossRefGoogle Scholar
  168. 168.
    Costantinides Y, Kingsley G, Pitzalis C, Panayi GS: Inhibition of lymphocyte proliferation by a monoclonal antibody (RFT2) against CD7. Clin Exp Immunol 1991;85(1):164–167.PubMedCrossRefGoogle Scholar
  169. 169.
    Emara M, Sanfilippo F: The inhibition of T cell proliferative responses by crosslinking CD7 and IgM-Fc receptors. Cell Immunol 1992;144(1):143–154.PubMedGoogle Scholar
  170. 170.
    Akbar AN, Amlot PL, Ivory K, Timms A, Janossy G: Inhibition of alloresponsive naive and memory T cells by CD7 and CD25 antibodies and by cyclosporine. Transplantation 1990;50(5):823–829.PubMedGoogle Scholar
  171. 171.
    Carrel S, Salvi S, Rafti F, Favrot M, Rapin C, Sekaly RP: Direct involvement of CD7 (gp40) inactivation of TcR gamma/delta+T cells. Eur J Immunol 1991;21(5): 1195–1200.PubMedGoogle Scholar
  172. 172.
    Russell GJ, Parker CM, Cepek KL, Brenner MB, Bhan AK: Eridence for a structural difference in the CD7 polypeptide on human thymocytes and in traepithelial lymohocytes defined by a new monoclonal antibody, 3D9. Cell Immunol 1994;154(1):153–165.PubMedGoogle Scholar
  173. 173.
    Hou Z, Leta E, Jung LK: Crosslinking CD7 on myeloblasts results in granulocy te-macrophage colony-stimulating factor production. Blood 1996;88(1):124–129.PubMedGoogle Scholar
  174. 174.
    Rabinowich H, Lin WC, Herberman RB, Whiteside TL: Signaling via CD7 molecules on human NK cells. Induction of tyrosine phosphorylation and beta 1 integrin-mediated adhesion to fibronectin. J Immunol 1994; 153(8):3504–3513.PubMedGoogle Scholar
  175. 175.
    Rabinowich H, Pricop L, Herberman RB, Whiteside TL: Expression and function of CD7 molecule on human natural killer cells. J Immunol 1994;152(2):517–526.PubMedGoogle Scholar
  176. 176.
    Schanberg LE, Lee DM, Fleenor DE, Ware RE, Patel DD, Haynes BF, et al.: Characterization of human CD7 transgenic mice. J Immunol 1995:155(5):2407–2418.PubMedGoogle Scholar
  177. 177.
    Yoshikawa K, Seto M, Ueda R, Ohata Y, Fukatsu H, Segawa A, et al.: Isolation and characterization of mouse CD7 cDNA. Immunogenetics 1993;37(2):114–119.PubMedGoogle Scholar
  178. 178.
    Bonilla FA, Kokron CM, Swinton P, Geha RS: Targeted gene disruption of murine CD7. Int Immunol 1997;9(12):1875–1883.PubMedGoogle Scholar
  179. 179.
    Lee DM, Staats HF, Sundy JS, Patel DD, Sempowski GD, Scearce RM, et al.: Immumologic characterization of CD7-deficient mice. J Immunol 1998;160(12): 5749–5756.PubMedGoogle Scholar
  180. 180.
    Sempowski GD, Lee DM, Scearce RM, Patel DD, Haynes BF: Resistance of CD7-deficient mice to lipopolysaccharide-induced shock syndromes. J Exp Med 1999;189 (6):1011–1016.PubMedGoogle Scholar
  181. 181.
    Leta E, Hou Z, Lederman L, Jung LK: Interaction between the extracellular domain of CD7 and concanavalin A: a clue to the identity of the ligand for CD7. Cell Immunol 1996;173(1):15–21.PubMedGoogle Scholar
  182. 182.
    Pace KE, Lee C, Stewart PL, Baum LG: Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J Immunol 1999;163: 3801–3811.PubMedGoogle Scholar
  183. 183.
    Pace KE, Hahn HP, Pang M, Nguyen JT, Baum LG: Cutting edge: CD7 deliversa pro-apoptotic signal during galectin-1-induced T cell death. J Immunol 2000;165: 2331–2334.PubMedGoogle Scholar
  184. 184.
    Lyman SD, Escobar S, Rousseau A-M, Armstrong A, Fanslow WC: Identification of CD7 asa cognate of the human K12 (SECTM1) protein. J Biol Chem 2000;275(5): 3431–3437.PubMedGoogle Scholar
  185. 185.
    Slentz-Kesler KA, Hale LP, Kaufman RE: Identification and characterization of K 12 (SECTM1), a novel human gene that encodes a golgi-associated protein with transmembrane and secreted isoforms. Genomics 1998;47: 327–340.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  • Ross Stillwell
    • 1
  • Barbara E. Bierer
    • 1
  1. 1.Laboratory of Lymphocyte Biology, Laboratory Research Program, Division of Intramural Research, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesda

Personalised recommendations