Advertisement

Immunologic Research

, Volume 22, Issue 2–3, pp 263–269 | Cite as

HIV vaccine development at duke university medical center

  • Barton F. Haynes
  • Hua-Xin Liao
  • Herman F. Staats
  • Munir S. Alam
  • Kent J. Wienhold
  • David C. Montefiori
Article
  • 29 Downloads

Abstract

With the AIDS epidemic continuing to spread throughout the world, development of a safe, practical, and effective HIV vaccine is anational priority. HIV vaccine research efforts are currently targeted towards design of HIV immunogens that induce both cellular and humoral immunity. This brief review summarizes ongoing work at the Duke University School of Medicine on HIV vaccine development.

Keywords

Human Immunodeficiency Virus Human Immunodeficiency Virus Vaccine Histocompatibility Leukocyte Antigen Human Immunodeficiency Virus Envelope Human Immunodeficiency Virus Isolate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IAVI Report 200 on HIV Vaccine Development. International AIDS Vaccine Initiative, NY, NY.Google Scholar
  2. 2.
    Kaunda D: Kaunda on Violence. Morrris CM, ed. St. James Place, London, England; Collins 1980; 67.Google Scholar
  3. 3.
    Gallo R, Salahuddin SZ, Popovic M, et al.: Frequent detection and isolation of a human T-lymphotrophic retrovirus, HTLV-III, from patients with AIDS at risk for AIDS. Science 1984;224:500–503.PubMedCrossRefGoogle Scholar
  4. 4.
    Matthews TJ, Langlois AJ, Robey WG, et al.: Restricted neutralization of divergent human T-lymphotropic virus type II isolates by antibodies to the major envelope glycoprotein. Proc Natl Acad Sci USA 1986;83:9709–9713.PubMedCrossRefGoogle Scholar
  5. 5.
    Palker TJ, Clark ME, Langolis AJ, et al.: Type-specific neutralization of the human immunodeficiency virus with antibodies to envencoded encoded synthetic peptides. Proc Natl Acad Sci USA 1988;85: 1932–1936.PubMedCrossRefGoogle Scholar
  6. 6.
    Rusche JR, Javaherian K, McDanal C, et al.: Antibodies that inhibit fusion of human immunodeficiency virus-infected cells bind a 24 amino acid sequence of the viral envelope gp120. Proc Natl Acad Sci USA 1988;85:3198.PubMedCrossRefGoogle Scholar
  7. 7.
    Palker TJ, Matthews TJ, Langlois AL, et al.: Polyvalent human immunodeficiency virus synthetic immunogen comprised of envelope gp120 T helper cell sites and B cell neutralization epitopes. J Immunol 1989;142:3612–3619.PubMedGoogle Scholar
  8. 8.
    Cease KB, Margaut H, Commette JL, et al.: Helper T cell antigenic site identification in the acquired immunodeficiency syndrome virus gp120 envelope protein and induction of immunity in mice to the native protein using a 16-residue synthetic peptide. Proc Natl Acad Sci USA 1987;84:4249.PubMedCrossRefGoogle Scholar
  9. 9.
    haynes BF, Moody MA, Heinly CS, Korber B, Millard WAA, Scearce RM: HIV-1 gp120 V3 region primer-induced antibody suppression isovercome by administration of HIV-1 gp120 envelope C4-V3 peptides as a polyvalent immunogen. AIDS Research and Human Retroviruses 1995;11:211–221.PubMedGoogle Scholar
  10. 10.
    Bartlett JA, Wasserman SS, Hicks CB, et al.: and the DATR1010 Study Group: Safety and immunogenicity of a HIV envelope C4-V3 polyvalentsynthetic peptide immunogen in HIV-1 infected HLA-B7 positive subjects. AIDS Res Hum Retro 1998;12:1291–1300.Google Scholar
  11. 11.
    Haynes BF, Arthur LO, Frost P, et al.: Conversion of an immunogenic human immunodeficiency virus (HIV) envelope synthetic peptide to a tolerogen in chimpanzees by the fusogenic domains of HIV gp41 envelopeprotein. J Exp Med 1993; 177:717–727.PubMedCrossRefGoogle Scholar
  12. 12.
    Hart MK, Weinhold KJ, Scearce RM, et al.: Priming of anti-HIV CD8+ cytotoxic T cells in vivo by carrier-free HIV synthetic peptides. Proc Natl Acad Sci USA 1991;88:9448–9452.PubMedCrossRefGoogle Scholar
  13. 13.
    Yasutomi Y, Palker TJ, Gardner MB, Haynes BF, Letvin NL: Synthetic peptides in mineral iol adjuvant elicits simian immunodeficiency virus-specific CD8+ cytotoxic T lymphocytes in rhesus monkeys. J Immunol 1993;151; 5096–5105.PubMedGoogle Scholar
  14. 14.
    Vu HM, de Lorimier R, Moody MA, Haynes BF, Spicer L: Conformation preferences of a chimeric peptide HIV-1 immunogen from the C4-V3 domains of gp120 envelope protein of HIV-1 CanOA based on solution NMR: Comparison to a related immunogenic peptide from HIV-IRF. Biochemistry 1996;35:5158–5165.PubMedCrossRefGoogle Scholar
  15. 15.
    de Lorimier R, Moody MA, Haynes BF, Spicer LD: NMR-derived solution conformations of a hybrid synthetic peptide containing multiple epitopes of envelope protein gp120 from the RF strain of human immunodeficiency virus. Biochemistry 1994;33:2055–2061.PubMedCrossRefGoogle Scholar
  16. 16.
    Haynes BF: HIV Vaccines: Where we are and where we are going. Lancet 1996;348:933–937.PubMedCrossRefGoogle Scholar
  17. 17.
    Ward FE, Tuan S, Haynes BF: Analysis of HLA frequencies in population cohorts for design of HLA-based HIV vaccines. In HIV Molecular Immunology Database Korber B, Brander C, Walker B, et al. (eds.), Los Alamos National Laboratory, Los Alamos, NM: Theoretical Biology Group, 1995; IV10-IV16.Google Scholar
  18. 18.
    Sercharz E, Lehman P, Ametani A, Benichou G, Miller A, Moudgil K: Dominance and crypticity of T cell antigenic determinants. Ann Rev Immunol 1993;11:728.Google Scholar
  19. 19.
    Heemels MT, Schumacher TN, Wonigeit K, Ploegh HL: Peptide translocation by variants of the transporter associated withantigen processing. Science 1993;262: 2059–2063.PubMedCrossRefGoogle Scholar
  20. 20.
    Sandberg JK, Grufman P, Wolpert EZ, Franksson L, Chambers BJ, Karre K: Superdominance among immunodominant H-2Kb-restricted epitopes and reversal by dendritic cell-mediated antigen delivery. J Immunol 1998;160:3163.PubMedGoogle Scholar
  21. 21.
    Goulder PJR, Sewell AK, Lalloo DG, et al.: Patterns of immunodominance in HIV-1-specific cytotoxic T lymphocyte responses in two human histocompatibility leukocyte antigens (HLA)-indentical siblings with HLA-A 0201 are influenced by epitope mutation. J Exp Med 1997;185: 1423.PubMedCrossRefGoogle Scholar
  22. 22.
    Panteleo G, Soudeyns H, Demarest JS, et al.: Evidence for rapid disapperance of initially expanded HIV specific CD8+ T cell clones during primary HIV infection. Proc Natl Acad Sci USA 1997;94: 9848–9853.CrossRefGoogle Scholar
  23. 23.
    Altman JD, Moss PA, Goulder PJR, et al.: Phenotypic analysis of antigen-specific T lympchocytes. Sciences 1996:274:94–95.Google Scholar
  24. 24.
    McMichael AJ, O'Callaghan CA: A new look at T cells. J Exp Med 1998;187:1367–1371.PubMedCrossRefGoogle Scholar
  25. 25.
    Korber BTM, Brander C, Haynes B, et al.: HIV Molecular Immunology Database. Theoretical Biology and Biophysics Group T-10, Mail StopK 710, Los Alamos, NM, 1999.Google Scholar
  26. 26.
    Ferrari G, Humphrey W, McElrath MJ, et al.: Clade B-based HIV-1 vaccines elicit cross-clade cytotoxic T lymphocyte reactivities in unifected volunteers. Proc Natl Acad Sci USA 1997;94: 1396–1401.PubMedCrossRefGoogle Scholar
  27. 27.
    Staats HF, Bradney CP, Jackson SS, et al.: Cytokine requirements for induction of systemic cytotoxic T lymphocytes after nasall immunization: cytokines requirements for CTL induction (submitted, 2001).Google Scholar
  28. 28.
    Chu C, Qury TD, Enghild JJ, Pizzo SV: Adjuvant-free in vivo target: antigen delivery by α2-macroglobulin enhance antibody formation. J Immunol 1994; 152:1538–1544.PubMedGoogle Scholar
  29. 29.
    Liao H-X, Cianciolo GJ, Staats HF, etal.: Monophosphoryl lipid A and GM-CSF dramatically enhance α2-macroglobulin dramatically mediated HIV envelope subunit immunogens. (submitted, 2001).Google Scholar
  30. 30.
    Moore JP, Ho DD: HIV-1 neutralization: The consequences of viral adaptation to growth on trasformed T cells. AIDS 1995: Supp A: 5117–5136.Google Scholar
  31. 31.
    Trkola A, Purtscher M, Mexter T, et al.: Human monoclonal 2G12 defines a distincitive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol 1996;10:1100–1108.Google Scholar
  32. 32.
    Liao H-X, Etemad-Moghadam B, Montefiori DC, et al.: Induction of antibodies against HIV envelope that neutralize non-pathogenic and pathogenic primary isolate simian/human immunodeficiency virus strains. J Virol 2000;74:254–263.PubMedCrossRefGoogle Scholar
  33. 33.
    Letvin N, Robinson S, Axthelm MK, et al.: Vaccine-elicited V3 loop-specific antibodies in rhesus monkeys and control of a SHIV expressing a primary patient HIV-1 isolate envelope. J Virol (in press, 2001).Google Scholar
  34. 34.
    Labrijn AF, Parren P: Neutralizing epitopes of HIV-1. In HIV Molecular Immunology Database. Korber B, Brander C, Haynes B, et al. (eds.) Theoretical Biology and Biophysics Group T-10, Mail Stop K710, Los Alamos, New Mexico, 1999.Google Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  • Barton F. Haynes
    • 1
    • 2
  • Hua-Xin Liao
    • 1
    • 2
  • Herman F. Staats
    • 1
    • 2
  • Munir S. Alam
    • 1
    • 2
  • Kent J. Wienhold
    • 1
    • 2
  • David C. Montefiori
    • 1
    • 2
  1. 1.Department of Medicine, The Duke Center for Aids Research and the Human Vaccine InstituteDuke University Medical CenterDurham
  2. 2.Department of Surgery and Immunology, The Duke Center for Aids Research and the Human Vaccine InstituteDuke University Medical CenterDurham

Personalised recommendations