Immunologic Research

, Volume 21, Issue 2–3, pp 89–102

Relative roles of somatic and darwinian evolution in shaping the antibody response

  • Marilyn Diaz
  • Norman R. Klinman


The need for a highly specific system of recognition in immunity has resulted in the evolution of several somatic mechanisms such as V(D)J recombination, to diversify the repertoire of B cells. Therefore, repertoire diversification is the driving force for the cells that constitute the bulk of the response to unpredictable pathogens, the B2 naïve B cells. Predictability of antigen, on the other hand, has played a major role in shaping the neonatal repertoire, in which evolution to recognize commonly encountered pathogens has driven the germline sequence of several VH segments that are used frequently in the neonatal repertoire. A third population, the memory B cell population, is generated to respond to a known pathogen, but predictability of the pathogen is not acquired until after a first exposure. Therefore, it is somatic evolution in germinal centers that drives the generation of high-affinity memory B cells.

Key Words

Evolution of immune system V(D)J recombination Neonatal repertoire Memory B cells Somatic hypermutation Germinal center Surrogate light chain Allelic exclusion Reading frame Tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stahl PD, Ezekowitz RA: The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 1998;10:50–55.PubMedCrossRefGoogle Scholar
  2. 2.
    Tonegawa S: Somatic generation of antibody diversity. Nature 1983;302:575–581.PubMedCrossRefGoogle Scholar
  3. 3.
    Desiderio SV, Yancopoulos GD, Paskind M, Thomas E, Boss M, Landau N, Alt FW, Baltimore D: Insertion of N regions into heavychain genes is correlated with expression of terminal deoxytransferase in B cells. Nature 1984;311:752–755.PubMedCrossRefGoogle Scholar
  4. 4.
    Anderson RS, Lawrence CB, Wilson, SH, Beattie KL: Genetic relatedness of human DNA polymerase beta and terminal deoxynucleotidyltransferase. Gene 1987; 163–173.Google Scholar
  5. 5.
    Kunkel TA, Gopinathan KP, Dube DK, Snow ET, Loeb LA: Rearrangements of DNA mediated by terminal transferase. Proc Natl Acad Sci USA 1986;83: 1867–1871.PubMedCrossRefGoogle Scholar
  6. 6.
    Klinman NR, Press JL, Sigal NH, Gearhart PJ: The acquisition of the B cell specficity repertoire: the germ line theory of predetermined permutation of genetic information. in Cunningham AJ (ed). The Generation of Diversity: A New Look. London, Academic, 1976, pp 127–138.Google Scholar
  7. 7.
    Gu H, Forster I, Rajewsky K: Sequence homologies, N sequence insertion and JH gene utilization in VH-D-JH joining: implications for the joining mechanism and the ontogenetic timing of Ly-1 B cell and B-CLL progenitor generation. EMBO J 1990;9:2133–2138.PubMedGoogle Scholar
  8. 8.
    Feeney AJ: Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J junctional sequences. J Exp Med 1990;172: 1377–1390.PubMedCrossRefGoogle Scholar
  9. 9.
    Feeney AJ: Predoinance of VH-D-JH junctions occurring at sites of short sequence homology results in limited junctional diversity in neonatal antibodies. J Immunol 1992;149:222–229.PubMedGoogle Scholar
  10. 10.
    Malynn, BA, Yancopoulos GD, Barth JE, Bona CA, Alt FW: Biased expression of JH-proximal VH genes occurs in the newly generated repertoire of neonatal and adult mice. J Exp Med 1990;171: 843–859.PubMedCrossRefGoogle Scholar
  11. 11.
    Teale JM, Medina CA: Comparative expression of adult and fetal V gene repertoires. Int Rev Immunol 1992;95–111.Google Scholar
  12. 12.
    Kaartinen M, Makela O: Reading of D genes in variable frames as a source of antibody diversity. Immunol Today 1985;6:324–326.CrossRefGoogle Scholar
  13. 13.
    Decker DJ, Boyle NE, Koziol JA, Klinman NR: The expression of the Ig H chain repertoire in developing bone marrow B lineage cells. J Immunol 1991:146:350–361.PubMedGoogle Scholar
  14. 14.
    Decker DJ, Klinman NR: Developmental selection plus evolutionary determination [contribute to Dn reading frame bias]. Immunol Today 1991;12:421.CrossRefGoogle Scholar
  15. 15.
    Melchers F, Karasuyama H, Haasner D, Bauer S, Kudo A, Sakaguchi N, Jameson B, Rolink A: The surrogate light chain in B cell development. Immunol Today 1993;14: 60–68.PubMedCrossRefGoogle Scholar
  16. 16.
    Kline GH, Hartwell L, Beck-Engeser GB, Keyra U, Zaharevitz S, Klinman NR, Jäck HM: Pre-B cell receptor-mediated selection of pre-B cells synthesizing functional μ heavy chains. J Immunol 1998; 161:1608–1618.PubMedGoogle Scholar
  17. 17.
    Raaphorst FM, Raman CS, Natl BT, Teale JM: Molecular mechanisms governing reading frame choice of immunoglobulin diversity genes. Immunol Today 1997; 18:37–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Keyna U, Beck-Engeser GB, Jongstra J, Applequist SE, Jäck HM: Surrogate light chain-dependent selection of 1g heavy chain V regions. J Immunol 1995;155: 5536–5539.PubMedGoogle Scholar
  19. 19.
    Wasserman R, Li YS, Shinton SA, Carmack CE, Manser T, Wiest DL, Hayakawa K, Hardy RR: A novel mechanism for B cell repertoire maturation based on response by B cell precursors to pre-B receptor assembly. J Exp Med 1998; 187:259–264.PubMedCrossRefGoogle Scholar
  20. 20.
    Benedict CL, Kearney JF: Increased junctional diversity in fetal B cells results in a loss of protective anti-phosphorylcholine antibodies in adult mice. Immunity 1999;10:607–617.PubMedCrossRefGoogle Scholar
  21. 21.
    Larijani M, Yu CC, Golub R, Lam QL, Wu GE: The role of components or recombination signal sequences in immunoglobulin gene segment usage: a V81 X model. Nucleic Acids Res 1999; 27:2304–2309.PubMedCrossRefGoogle Scholar
  22. 22.
    Decker DJ, Boyle NE, Klinman NR: Predominance of nonproductive rearrangements of VH81X gene segmentsevidences a dependence of B cell clonal maturation on the structure of nascent H chains. J Immunol 1991;147: 1406–1411.PubMedGoogle Scholar
  23. 23.
    Kantor AB, Herzenberg LA: Origin of murine B cell lineages. Annu Rev Immunol 1993;11: 501–538.PubMedCrossRefGoogle Scholar
  24. 24.
    Klinman NR, Press JL, Pickard AR, Woodland RT, Dewey AT: The biography of the B cell, in Sercarz E, Williamson A, Fox CF (eds): The Immune System. New York, Academic, 1974, pp 357–365.Google Scholar
  25. 25.
    Klinman NR, Press JL: The characterization of the B cell repertoire specific for the 2,4 dinitrophenyl determinants in neonatal BALB/c mice. J Exp Med 1975;141: 1133–1146.PubMedCrossRefGoogle Scholar
  26. 26.
    Klinman NR: The cellular origins of memory B cells. Semin Immunol 1997;9:241–247.PubMedCrossRefGoogle Scholar
  27. 27.
    Weigert M, Perry R, Kelley D, Hunkapiller T, Schilling J, Hood L: The joining of V and J gene segments creates antibody diversity. Nature 1980;283:497–499.PubMedCrossRefGoogle Scholar
  28. 28.
    Hinds-Frey KR, Nishikata H, Litman RT, Litman GW: Somatic variation precedes extensive diversification of germline sequences and combinatorial joining in the evolution of immunoglobulin heavy chain diversity. J Exp Med 1993;178:815–824.PubMedCrossRefGoogle Scholar
  29. 29.
    Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF: A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 1995; 374:168–173.PubMedCrossRefGoogle Scholar
  30. 30.
    Hohman VS, Schulter SF, Marchalonis JJ: Diversity of Ig light chain clusters in the sandbarshark (Carcharhinus plumbeus). J Immunol 1995;155:3922–3928.PubMedGoogle Scholar
  31. 31.
    Decker DJ, Kline GH, Hayden TA, Zaharevitz SN, Klinman NR: H chain V gene specific elimination of B cells during the pre B cell to B cell transition. J Immunol 1995;154:4925–4935.Google Scholar
  32. 32.
    Sakaguchi N, Melchers F: Lambda 5, a new light-chain related locus selectively expressed in pre-B lymphocytes. Nature 1986;324: 579–582.PubMedCrossRefGoogle Scholar
  33. 33.
    Reynaud CA, Anquez V, Grimal H, Weill JC: A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell 1987;48:379–388.PubMedCrossRefGoogle Scholar
  34. 34.
    Melchers F, Rolink A, Grawunder U, Winkler TH, Karasuyama H, Ghia P, Andersson J: Positive and negative selection events during B lymphopoiesis. Curr Opin Immunol 1995;7:214–227.PubMedCrossRefGoogle Scholar
  35. 35.
    Iglesias A, Lamers M, Kohler G: Expression of immunoglobulin δ chain causes allelic exclusion in transgenic mice. Nature 1987;330: 482–484.PubMedCrossRefGoogle Scholar
  36. 36.
    Hagman J, Lo D, Doglio LT, Hackett J Jr, Rudin CM, Haasch D, Brinster R, Storb U: Inhibition of immunoglobulin gene rearrangement by the expression of a λ 2 transgene. J Exp Med 1989;169: 1911–1929.PubMedCrossRefGoogle Scholar
  37. 37.
    Nussenzweig MC, Shaw AC, Sinn E, Danner DB, Holmes KL, Morse HC III, Leder P: Allelic exclusion in transgenic mice that express the membrane form of immunoglobulin μ. Science 1987;236:816–819.PubMedCrossRefGoogle Scholar
  38. 38.
    Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT: C 3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 1996;271:348–350.PubMedCrossRefGoogle Scholar
  39. 39.
    Linton PJ, Rudie A, Klinman NR: Tolerance susceptibility of newly generating memory B cells. J Immunol 1991;146:4099–4104.PubMedGoogle Scholar
  40. 40.
    Metcalf ES, Klinman NR: In vitro tolerance induction of bone marrow cells: a marker for B cell maturation. J Immunol 1977;118: 2111–2116.PubMedGoogle Scholar
  41. 41.
    Hertz M, Nemazee D: Receptor editing and commitment in B lymphocytes. Curr Opin Immunol 1998;10:208–213.PubMedCrossRefGoogle Scholar
  42. 42.
    Radic MZ, Erickson J, Litwin S, Weigert M. B.: lymphocytes may escape tolerance by revising their antigen receptors. J Exp Med 1993;177:1165–1173.PubMedCrossRefGoogle Scholar
  43. 43.
    Han S, Zheng B, Dal Porto J, Kelsoe G: In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. IV. Affinity-dependent, antigen-driven B cell apoptosis in germinal centers as a mechanism for maintaining self-tolerance. J Exp Med 1995;182:1635–1644.PubMedCrossRefGoogle Scholar
  44. 44.
    Camacho SA, Kosco-Vilbois MH, Berek C: The dynamic structure of the germinal center. Immunol Today 1998;19:511–514.PubMedCrossRefGoogle Scholar
  45. 45.
    Coico RF, Bhogal BS, Thorbecke GJ: Relationship of germinal centers in lymphoid tissue to immunologic memory VI. Transfer of B cell memory with lymphnode cells fractionated according to their receptors for peanut agglutinin. J Immunol 1983;131:2254–2257.PubMedGoogle Scholar
  46. 46.
    Diaz M, Velez J, Singh M, Cerny J, Flajnik MF: Mutationa pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation. Int Immunol 1999;11:825–833.PubMedCrossRefGoogle Scholar
  47. 47.
    Chang, B, Casali P: The CDR1 sequences of a majorproportion of human germline Ig VH genes are inherently susceptible to amino acid replacement. Immunol Today 1994;15:367–373.PubMedCrossRefGoogle Scholar
  48. 48.
    Jeme NK: The somatic generation of immune recognition. Eur J Immunol 1971;1:1–9.CrossRefGoogle Scholar
  49. 49.
    Diaz M, Greenberg AS, Flajnik MF: Somatic hypermutation of the new antigen receptor gene (NAR) in the nurse shark does not generate the repertoire: possible role in antigen-driven reactions in the absence of germinal centers. Proc Natl Acad Sci USA 1998;95: 14,343–14,348.CrossRefGoogle Scholar
  50. 50.
    Reynaud CA, Garcia C, Hein WR, Weill JC: Hypermutation generating the sheep immunoglobulin repertoireisan antigen-independent process. Cell 1995;80:115–125.PubMedCrossRefGoogle Scholar
  51. 51.
    Diaz M, Flajnik MF: Evolution of somatic hypermutation and gene conversion in adaptive immunity. Immunol Rev 1998; 162:13–24.PubMedCrossRefGoogle Scholar
  52. 52.
    Retter MW, Nemazee D: Receptor editing occurs frequently during normal B cell development. J Exp Med 1998;188:1231–1238.PubMedCrossRefGoogle Scholar
  53. 53.
    Linton PJ, Decker DJ, Klinman NR: Primary antibody forming cells and secondary B cells are generated from separate precursor cell subpopulations. Cell 1989;59: 1049–1059.CrossRefGoogle Scholar
  54. 54.
    Decker DJ, Linton PJ, Zaharevitz S, Biery M, Gingeras TR, Klinman NR: Defining subsets of naive and memory B cells based on the ability of their progeny to somatically mutate in vitro. Immunity 1995;2: 195–203.PubMedCrossRefGoogle Scholar
  55. 55.
    Klinman NR, Linton PJ: The generation of B cell memory: a working hypothesis, in Sprent J, Gray D (eds): Current Topics in Microbiology and Immunology. Heidelberg, Springer-Verlag, 1990, vol 159, pp 19–35.Google Scholar
  56. 56.
    Jacob J, Kelsoe G: In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl) acetyl. II. A common clonal origin for periarteriolar lymphoids heath-associated foci and germinal centers. J Exp Med 1992;176: 679–687.PubMedCrossRefGoogle Scholar
  57. 57.
    Allman DM, Ferguson SE, Lentz VM, Cancro MP: Peripheral B cell maturation. II. Heat-stable antigen (hi) splenic B cells are an immaturedevelopmentalintermediate in the production of long-lived marrow-derived B cells. J Immunol 1993;151:4431–4444.PubMedGoogle Scholar
  58. 58.
    Klinman NR, Hayden TA, Kline GH: B cell maintenance in aged mice reflects both increased B cell longevity and decreased B cell generation. J Immunol 1999;162: 3342–3349.PubMedGoogle Scholar
  59. 59.
    Linton PJ, Klinman NR: Functionality of B cell subsets in aged mice. Aging: Immunol Infect Dis 1993;4:213–220.Google Scholar
  60. 60.
    Lebecque S, de Bouteiller O, Arpin C, Banchereau J, Liu YJ: Germinal center founder cells display propensity for apoptosis before onset of somatic mutation. J Exp Med 1997;185:563–571.PubMedCrossRefGoogle Scholar
  61. 61.
    Rupnow BA, Alarcon RM, Giaccia AJ, Knox SJ: P53 mediates apoptosis induced by c-Myc activation in hypoxic or gamma irradiated fibroblasts. Cell Death Differ 1998;5:141–147.PubMedCrossRefGoogle Scholar
  62. 62.
    Foley KP, McArthur GA, Queva C, Hurlin PJ, Soriano P, Eisenman RN: Targeted disruption of the MYC antagonist MADI inhibits cell cycle exit during granulocyte differentiation. EMBO J 1998;17: 774–785.PubMedCrossRefGoogle Scholar
  63. 63.
    Freedman DA, Wu L, Levine AJ: Functions of the MDM2 oncoprotein. Cell Mol Life Sci 1999;55: 96–107.PubMedCrossRefGoogle Scholar
  64. 64.
    Martinez-Valdez H, Guret C, de Bouteiller O, Fugier I, Banchereau J, Liu Y-J: Human germinal center B cells express the apoptosis-inducing genes Fas, c-myc, P53, and Bax but not the survival gene bcl-2. J Exp Med 1996;183:971–977.PubMedCrossRefGoogle Scholar
  65. 65.
    Peters A, Storb U: Somatic hypermutation of immunoglobulin genes is linked to transcriptioninitiation. Immunity 1996;4:57–65.PubMedCrossRefGoogle Scholar
  66. 66.
    Reynaud CA, Bertocci B, Frey S, Delbos F, Quint L, Weill JC: Mismatch repair and immunoglobulin gene hypermutation: did we learn something. Immunol Today 1999; 20:522–527.PubMedCrossRefGoogle Scholar
  67. 67.
    Shannon M, Weigert M: Fixing mismatches. Science 1998;279: 1159,1160.PubMedCrossRefGoogle Scholar
  68. 68.
    Phung QH, Winter DB, Cranston A, Tarone RE, Bohr VA, Fishel R, Gearhart PJ: Increased hypermutation at G and C nucleotides in immunoglobulin variable genes from mice deficient in the MSH2 mismatch repair protein.Google Scholar
  69. 69.
    Reuven NB, Tomer G, Livneh Z: The mutagenesis proteins UmuD' and UmuC prevent lethal frameshifts while increasing base sub-Google Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Marilyn Diaz
    • 1
  • Norman R. Klinman
    • 1
  1. 1.Department of Immunology, IMM-16The Scripps Research InstituteLa Jolla

Personalised recommendations