Immunologic Research

, Volume 21, Issue 2–3, pp 129–137

Interleukin-8 and its receptor CXCR2 in atherosclerosis

  • William A. Boisvert
  • Linda K. Curnss
  • Robert A. Terkeltaub
Article

Abstract

The participation of inflammatory cells in atherosc lerosis is a well-known process that involves numerous molecules including chemotactic cytokines (chemokines) for their entry into the vessel wall. Although the C-C chemokine monocyte chemoattractant protein-1 and its receptor, CCR2, have been implicated in atherosclerosis, the role of the classic C-X-C chemokine, interleukin-8 (KC/growth-related oncogene α in mice) and its receptor XCCR2 has not been studied in the pathogenesis of atherosclerosis. Our research has shown that CXC R2 is strongly expressed on macrophages (Mф) in atherosclerotic lesion. This CXCR2 expression is proatherogenic in that CXCR2 deficiency significantly reduces the progression of advanced atherosclerosis in mice. Although the mechanism still needs to be worked out, it appears that CXCR2 expression on lesion Mф is essential for these cells to be retained in the lesion.

Key Words

Atherosclerosis Macrophages Interleukin-8 KC/growth-related oncogene α CXCR2 Monocyte chemoattractant protein-1 CCR2 Bone marrow transplantation Low-density lipoprotein receptor null mice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ross R: The pathogenesis of atherosclerosis: perspective for the 1990's. Nature 1993;362:801–809.PubMedCrossRefGoogle Scholar
  2. 2.
    Navab M, Berliner JA, Watson AD, Hama S. Territo MC, Lusis AJ, Shih DM, van Lenten BJ, Frank JS, Demer LL, Edwands PA, Fogelman AM: The yin and yang of oxidation in the development of the fatty streak. Arteriosel Thromb 1996; 16:831–842.Google Scholar
  3. 3.
    Watanabe T, Haraoka S, Shimokama T: Inflammatory and immunological naturo of atherosclerosis. Int J Cardiol 1996;54(Suppl.): S51-S60.PubMedCrossRefGoogle Scholar
  4. 4.
    Markowitz SD: Atherosclerosis, just another cancer. J Clin Invest 1997;100:2143–2145.PubMedGoogle Scholar
  5. 5.
    Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Harsson GK: T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci USA 1995; 92: 3893–3897.PubMedCrossRefGoogle Scholar
  6. 6.
    Dansky HM, Charlton SA, Harper MM, Smith JD: T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci USA 1997; 94:4642–4646.PubMedCrossRefGoogle Scholar
  7. 7.
    Daugherty A, Pure E, Delfel-Butteiger D, Chen S, Leferovich J, Roselaar SE, Rader DJ: The effects of total lymphocyte deficiency on the extent of atherosc lerosis in apolipoprotein E-/-mice. J Clin Invest 1997;100:1575–1580.PubMedGoogle Scholar
  8. 8.
    Qiao J-H, Tripathi J, Mishra NK, Cai Y, Tripathi S, Wang X-P, Imes S, Fishbein MC, Clinton SK, Libby P, Lusis AJ, Rajavashisth TB: Role of macrophagecolony-stimulating factor in a the rosclerosis. Am J Pathol 1997;150:1687–1699.PubMedGoogle Scholar
  9. 9.
    Smith JD, Trogan E, Ginsberg M, Grigaux M, Tian J, Miyata M: Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor(op) and apolipoprotein E. Proc Natl Acad Sci USA 1995;92:8264–8268.PubMedCrossRefGoogle Scholar
  10. 10.
    Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K: A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 1997;386:292–296.PubMedCrossRefGoogle Scholar
  11. 11.
    Navab M, Imes SS, Hama SY, Hough GP, Ross LA, Bork RW, Valente AJ, Berliner JA, Drinkwater DC, Laks H, Fogelman AM: Monocyte transmigration induced by modification of low density lipoprotein in cocultures of huma aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J Clin Invest 1991;88:2039–2046.PubMedGoogle Scholar
  12. 12.
    Yla-Herttuala S, Lipton BA, Rosenfeld ME, Sarkioja T, Yoshimura T, Leonard EJ, Witztum JL, Steinberg D: Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA 1991;88:5252–5256.PubMedCrossRefGoogle Scholar
  13. 13.
    Watson AD, Leitinger N, Navab M, Faull KF, Horkko S, Witztum JL, Palinski W, Schwenke D, Salomon RG, Sha W, Subbanogounder G, Fogelman AM, Berliner JA: Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem 1997;272: 13,597–13,607.Google Scholar
  14. 14.
    Frostegard J, Huang YH, Ronnelid J, Schafer-Elinder L. Platelet-activating factor and oxidized LDL induce immune activation by a common mechanism. Arterioscl Thromb Vasc Biol 1997;17:963–968.PubMedGoogle Scholar
  15. 15.
    Prescott SM, McIntyre TM, Zimmerman GA, Stafforini DM: Inflammation as an early component of atherosclerosis and vascular damage—a role for P-se lectin and platelet-activating factor. Jpn Circ J 1996;60:137–141.PubMedCrossRefGoogle Scholar
  16. 16.
    Schecter AD, Rollins BJ, Zhang YJ, Charo JF, Fallon JT, Rossikhina M, Giesen PL, Nemerson Y, Taubman MB: Tissue factor is induced by monocyte chemoattractant protein-1 in human aortic smooth muscle and THP-1 cells. J Biol Chem 1997;272:28,568–28,573.CrossRefGoogle Scholar
  17. 17.
    Fruebis J, Gonzalez V, Silvestre M, Palinski W: Effect of probucol treatment on gene expression of VCAM-1, MCP-1, and M-C SF in the aortic wall of LDL receptor-deficient rabbits during early atherogenesis. Arterioscl Thromb Vasc Biol 1997;17:1289–1302.PubMedGoogle Scholar
  18. 18.
    McEvoy LM, Sun H, Tsao PS, Cooke JP, Berliner JA, Butcher EC: Novel vascular molecule involved in monocyte adhesion to aortic endothelium in models of atherogenesis. Arterioscl Thromb Vasc Biol 1997;185:2069–2077Google Scholar
  19. 19.
    Li H, Cybulsky MI, Gimbrone MA, Libby P: An atherogenic diet rapidly induces VC AM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscl Thromb 1993;13:197–204.PubMedGoogle Scholar
  20. 20.
    Calderon TM, Factor SM, Hatcher VB, Berliner JA, Berman JW: An endothelial cell adhesion protein for monocytes recognized by monoclonal antibody IG9: expression in vivo in inflamed human vessels and atherosclerotic human and Watanabe rabbit vessels. Lab Invest 1994;70:836–849.PubMedGoogle Scholar
  21. 21.
    Vora DK, Fang Z-T, Liva SM, Tyner TR, Parhami F, Watson AD, Drake TA, Territo MC, Berliner JA: Induction of P-selectin by oxidized lipoprotein separates effects on synthesis and surface expression. Circ Res 1997;80:810–818.PubMedGoogle Scholar
  22. 22.
    Vadas MA, Gamble JR: Endothelial adhesion molecules in a therogenesis a concerto orasolo? Circ Res 1996;79:1215,1216.Google Scholar
  23. 23.
    Vora DK, Teng PR, Tyner T, Territo MC, Berliner JA: Activation of endothelial α5β1 integrin, a potential regulator of monocyte-endothelial interaction in human atherogenesis. Circulation 1997; 96 (Suppl. 1):1–487 abstract.Google Scholar
  24. 24.
    Baggiolini M, Dewald B, Moser B: Human chemokines: an update. Annu Rev Immunol 1997; 15:675–705.PubMedCrossRefGoogle Scholar
  25. 25.
    Terkeltaub R, Boisvert W, Curtiss LK Chemokines in atherosclerosis. Curr Opin Lipidol 1998,9: 397–405.PubMedCrossRefGoogle Scholar
  26. 26.
    Weber C, Alon R, Moser B, Springer TA: Sequential regulation of α4β1 and α5β1 integrin avidity by CC chemokines in monocytes: implications for transendothelial chemotaxis. J Cell Biol 1996;134: 1063–1073.PubMedCrossRefGoogle Scholar
  27. 27.
    Kuziel WA, Morgan SJ, Dawson TC, Griffin S, Smithies O, Ley K, Maeda N: Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci USA 1997;94: 12,053–12,058.CrossRefGoogle Scholar
  28. 28.
    Boring L, Gosling J, Chensue SW, Kunkel SL, Farese RV, Jr, Broxmeyer HE, Charo IF: Impaired monocyte migration and reduced type I (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest 1997;100: 2552–2561.PubMedGoogle Scholar
  29. 29.
    Berkhout TA, Sarau HM, Moores K, White JR, Elshourbagy N, Appelbaum E: Cloning, in vitro expression, and functional characterization of a novel human CC chemokine of the monocyte chemotactic protein (MCP) family (MCP-4) that binds and signals through the CC chemokine receptor 2B. J Biol Chem 1997;272:16,404–16,413.CrossRefGoogle Scholar
  30. 30.
    Mach F, Schonbeck U, Sukhova GK, Bourcier T, Bonnefoy JY, Pober JS, Libby P: Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40-CD40 ligand signaling in atherosclerosis. Proc Natl Acad Sci USA 1997;94:1931–1936.PubMedCrossRefGoogle Scholar
  31. 31.
    Kornbluth RS, Kee K, Richman DD: CD40 ligand (CD154) stimulation of macrophages to produce HIV-1-suppressive betachemokines. Proc Natl Acad Sci USA 1998;95:5205–5210.PubMedCrossRefGoogle Scholar
  32. 32.
    Henn V, Slupsky JR, Graefe M, Anagnostopoulos I, Foerster R, Muller-Berghaus G, Kroczek RA: CD40 ligand on activated platelets triggers an in flammatory reaction of endothelial cells. Nature 1998; 391:591–594.PubMedCrossRefGoogle Scholar
  33. 33.
    Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ: Absence of monocyte chemoattractantprotein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 1988;2:275–281.CrossRefGoogle Scholar
  34. 34.
    Boring L, Gosling J, Cleary M, Charo IF: Decreased lesion formation in CCR2-/-mice revealsa role for chemokines in the initiation of atherosclerosis. Nature 1998;394:894–897.PubMedCrossRefGoogle Scholar
  35. 35.
    Penton-Rol G, Polentarutti N, Luini W, Borsatti A, Mancinelli R, Sica A, Sozzani S, Mantovani A: Selective inhibition of expression of the chemokine receptor CCR2 in huma monocytes by IFNγ. J Immunol 1998; 160: 3869–3873.PubMedGoogle Scholar
  36. 36.
    Tangirala RK, Murao K, Quehenberger O: Regulation of expression of the human monocyte chemotactic protin-l receptor (hCCR2) by cytokines. J Biol Chem 1997; 272:8050–8056.PubMedCrossRefGoogle Scholar
  37. 37.
    Apostolopoulos J, Davenport P, Tipping PG: Interleukin-8 production by macrophages from atheromatous plaques. Arterioscl Thromb Vasc Biol 1996;16: 1007–1012.PubMedGoogle Scholar
  38. 38.
    Schwartz D, Andalibi A, Chaverri-Almada L, Berliner JA, Kirchgessner T, Fang Z-T, Tekamp-Olson P, Lusis AJ, Gallegos C, Fogelman AM, Territo MC. Role of the GRO family of chemokines in monocyte adhesion to MM-LDL-stimulated endothelium. J Clin Invest 1994; 94:1968–1973.PubMedGoogle Scholar
  39. 39.
    Lukacs NW, Strieter RM, Elner V, Evanoff HL, Burdick MD, Kunkel SL: Production of chemokines, interleukin-8 and monocyte chemoattractant protein-1 during monocyte; endothelial cell interactions. Blood 1995;88:2767–2773.Google Scholar
  40. 40.
    Terkeltaub R, Banka C, Solan J, Santoro D, Brand K, Curtiss LK: Oxidized LDL induces the expression by monocytic cells of IL-8, a chemokine with T lymphocyte chemotactic activity. Arterioscl Thrombosis 1994;14:47–53.Google Scholar
  41. 41.
    Wen D, Rowland A, Derynck R: Expression and secretion of gro/MGSA by stimulated human endothelial cells. EMBO J 1989; 8:1761–1766.PubMedGoogle Scholar
  42. 42.
    Wang N, Tabas I, Winchester R, Ravalli S, Rabbani LE, Tall A: Interleukin 8 is induced by cholesterol loading of macrophages and expressed by macrophage foam cells in human atheroma. J Biol Chem 1996;271:8837–8842.PubMedCrossRefGoogle Scholar
  43. 43.
    Lundahl J, Skold CM, Hallden G, Hallgren M, Eklund A: Monocyte and neutrophil adhesion to matrix proteins is selectively enhanced in the presence of inflammatory mediators. Scand J Immunol 1996;44:143–149.PubMedCrossRefGoogle Scholar
  44. 44.
    Chuntharapai A, Lee J, Hebert CA, Kim KJ, Monoclonal antibodies detect different distribution patterns of IL-8 receptor A and IL-8 receptor B on human peripheral blood leukocytes. J Immunol 1994;153:5682–5688.PubMedGoogle Scholar
  45. 45.
    Zahn S, Jorj Z, Spanger H-P, Gotze O: Chemoattractant receptors for interleukin-8 and C5a: expression on peripheral blood leukocytes and differential regulation on HL-60 and AML-193 cells by vitamin D3 andall-transretinoic acid. Eur J Immunol 1997;27:935–940.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang J, Zhang Y, Kasahara T, Harada A, Matsushima K, Mukaida N: Detection of mouse IL-8 receptor homologue expression on peripheral blood leukocytes and mature myeloid lineage cells in bone marrow. J Leukocyte Biol 1996:60:372–381.PubMedGoogle Scholar
  47. 47.
    Morohashi H, Miyawaki T, Nomura H, Kuno K, Murakami S, Matsushima K, Mukaida N: Expression of bothtypes of human interleukin-8 receptors on mature neutrophils, monocytes, and natural killer cells. J Leukocyte Biol 1995;57:180–187.PubMedGoogle Scholar
  48. 48.
    Boisvert WA, Santiago R, Curtiss LK, Terkeltaub RA: A leukocyte homologue of the IL-8 receptor CXCR2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J Clin Invest 1998;101:353–363.PubMedGoogle Scholar
  49. 49.
    Cacalano G, Lee J, Kikly K, Ryan AM, Pitts-Meek S, Hutgren B, Wood WI, Moore MW: Neutrophil and B cell exparsion in mice that lack the murine IL-8 receptor homologue. Sciene 1994;265:682–684.CrossRefGoogle Scholar
  50. 50.
    Shuster DE, Kherli ME, Ackermann MR, Moore MW, Cacalano G, Wood WI, Bailish E: Technical comments: neutrophilia in mice that lack the murine IL-8 receptor homologue. Science 1995;269: 1590,1591.CrossRefGoogle Scholar
  51. 51.
    Broxmeyer HE, Cooper S, Cacalano G, Hague NL, Bailish E, Moore MW: Involvement of Interleukin (IL) 8 receptor in negative regulation of myeloid progenitor cells in vivo: evidence from mice lacking the murine IL-8 receptor homologue. J Exp Med 1996;184: 1825–1832.PubMedCrossRefGoogle Scholar
  52. 52.
    van Furth R: Development and distrubution of mononuclear phagocytes; in Gallin JL, Goldstein IM, Snyderman R (eds): Inflammation: Basic Principles and Clinical Correlates, 2nd ed. 1992. Raven Press, New York, pp. 325–339.Google Scholar
  53. 53.
    Pike M: Structure and function of monocytes and macrophages, in Koopman WJ (ed): Arthritis and Allied Conditions, 13th ed. 1997, Williams & Wilkins, Raltimore, pp. 339–354.Google Scholar
  54. 54.
    Leenen PJM, de Bruijn MFTR, Voerman JSA, Campbell PA, van Ewijk W: Markers of mouse macrophage development detected by monoclonal antibodies. J Immunol Methods 1994;174:5–19.PubMedCrossRefGoogle Scholar
  55. 55.
    Monner DA, Denker B: Characterization of clonally derived, spontaneously transformed bone marrow macrophage cell lines from lipoplysaccharide hyporesponsive LPS(d) and normal LPS(n) mice. J Leukocyte Biol 1997;61:469–480.PubMedGoogle Scholar
  56. 56.
    de Bruijn MF, Slieker WA, van der Loo JC, Voerman JS, van Ewijk W, Leenen PJ: Distinct mouse bone marrow macrophage precursors identified by differential expression of ER-MP12 and ER-MP20 antigens. Eur J Immunol 1994; 24:2279–2284.PubMedCrossRefGoogle Scholar
  57. 57.
    Jutila DB, Kurk S, Jutila MA: Differences in the expression of Ly-6C on neutrophils and monocytes following Pl-PLC hydrolysis and cellular activation. Immunol Lett 1994;41:49–57.PubMedCrossRefGoogle Scholar
  58. 58.
    Koch AE, Kumkel SL, Pearce WH, Sha MR, Parikh D, Evanoff HL, Haires GK, Burdick MD, Strieter RM: Enhanced production of the chemotacticyto kines interleukin-8 and monocyte chemoattractant protein-1 in human abdominal aortic aneurysms. Am J Pathol 1993;142:1423–1431.PubMedGoogle Scholar
  59. 59.
    Walz A, Meloni F, Clark-Lewis I, von Tscharner V, Baggiolini M. Ca2+ changes and respiratory burst in human neutrophils and monocytes induced by NAP-1/Interleukin-8, NAP-2, and gro/MGSA. J Leukocyte Biol 1991; 50:279–286.PubMedGoogle Scholar
  60. 60.
    Brand K, Mackman N, Curtiss LK: Interferon-γ inhibits macrophage apolipoprotein E production by posttranslational mechanisms. J Clin Invest 1993;91:2031–2039.PubMedGoogle Scholar
  61. 61.
    DiScipio RG, Daffem PJ, Schraufstatter IU, Sriranarao P: Human polymorphonuclear leukocytes adhere to complement factor H through an interaction that involves αMβ2 (CD11b/CD18). J Immunol 1998;160:4057–4066.PubMedGoogle Scholar
  62. 62.
    Detmers PA, Lo SK Olsen-Egbert E, Walz A, Baggiolini M, Cohn ZA: Neutrophil-activating protein l/inlerleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. J Exp Med 1990;171:1155–1162.PubMedCrossRefGoogle Scholar
  63. 63.
    Faull RJ, Ginsberg MH: Inside-out signaling through integrins. J Am Soc Nephrol 1996;7:1–8.Google Scholar
  64. 64.
    Shattil SJ, Girsberg MH: Integrin signaling in vascular biology. J Clin Invest 1997;100:1–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Yauch RL, Felsenfield DP, Kraeft S-K, Chen LB, Sheetz MP, Hemler ME: Mutational evidence for control of cell adhesion through integrindiffusion/clustering independent of ligand binding. J Exp Med 1997;186:1347–1355.PubMedCrossRefGoogle Scholar
  66. 66.
    De Nichilo MO, Yamada KM: Integrin αvβ5-dependentserine phosphorylation of paxillin in cultured human macrophages adherent to vitronectin. J Biol Chem 1996; 271:11,016–11,022.Google Scholar
  67. 67.
    Kakolyris S, Karakitsos P, Tzardi M, Agapitos E: Immunohistochemical detection of fibronectin in early and advanced atherosclerosis. In Vivo 1995;9:35–40.PubMedGoogle Scholar
  68. 68.
    Kremley SG, Chapoval AI, Evans R: Cytokine release by macrophages after interacting with CSF-1 and extracellular matrix proteins: characteristics of a mouse model of inflammatory responses in vitro. Cell Immunol 1998;185:59–64.CrossRefGoogle Scholar
  69. 69.
    Shang XZ, Lang BJ, Issekutz AC: Adhesion molecule mechanisms mediating monocyte migration through synovial fibroblast and endothelium barriers: role for CD11/CD18, very late antigen-4 (CD49d/CD29), very lateantigen-5 (CD49e/CD29), and vascularcell adhesion molecule-1 (CD106). J Immunol 1998;160:467–474.PubMedGoogle Scholar
  70. 70.
    Jongewaard IN, Tsai PM, Smith JW: The type Ill connecting segment of fibronectin containsanaspartic acid residue that regulates, the rate of binding to integrin α4β1. Cell Adhesion Commun 1996;3:487–495.Google Scholar
  71. 71.
    Ramos JW, DeSimone DW: Xenopus embryonic cell adhesion to fibronectin: posi tion-specific activation of RGD/synergy sitedependent migratory behavior at gastrulation. J Cell Biol 1996;134:227–240.PubMedCrossRefGoogle Scholar
  72. 72.
    Teng PR, Brenman M-L, Elices MJ, Strahl D, Vora, DK, Lusis AJ, Berliner JA: A peptide mimic of the α4 binding site of fibronectin decreases fatty streak formation and progression. FASEB J 1997; 11:A151.Google Scholar
  73. 73.
    Patel SS, Thiagarajan R, Willerson JT, Yeh ETH: Inhibition of α4 integrin and ICAM-1 markedly attenuates macrophage homing to atherosclerotic plaques in ApoE-deficient mice. Circulation 1998; 97:75–81.PubMedGoogle Scholar
  74. 74.
    Weber C, Alon R, Moser B, Springer TA: Sequential regulation of α4β1 and α5β1 integrinavidity by CC chemokines in monocytes: implications for transendothelial chemotaxis. J Cell Biol 1996; 134:1063–1073.PubMedCrossRefGoogle Scholar
  75. 75.
    Meerschaert J, Furie MB: Monocytes use either CD11/CD18 or VLA-4 to migrate across human endothelium in vitro. J Immunol 1994;152:1915–1925.PubMedGoogle Scholar
  76. 76.
    Huhtala P, Humphries MJ, McCarthy JB, Tremble PM, Werb Z, Damsky CH: Cooperative signaling by α5β1 and α4β1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol 1995; 129:867–879.PubMedCrossRefGoogle Scholar
  77. 77.
    Xu F, Carlos T, Li M, Sanchez-Sweatman O, Khokha R, Gorelik E: Inhibition of VLA-4 and up-regulation of TIMP-1 expression in B16BL6 melanoma cells transfected with MHC class I genes. Clin Exp Metastasis 1998;16:358–370.PubMedCrossRefGoogle Scholar
  78. 78.
    Hoch RC, Schraufstatter IU, Cochrane CG: Invivo, in vitro, and molecular aspects of interleukin-8 and the interleukin-8 receptors. J Lab Clin Med 1996;128:134–145.PubMedCrossRefGoogle Scholar
  79. 79.
    Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM: Interleukin-8 asa macrophage-derived mediator of angiogenesis. Science 1992;258:17,998–18,001.CrossRefGoogle Scholar
  80. 80.
    Nanney LB, Mueller SG, Buevo R, Peiper SC, Richmond A: Distributions of melanoma growth stimulatory activity of growth-regulated gene and the interleukin-8 receptor B in human wound repair. Am J Pathol 1995;147:1248–1260.PubMedGoogle Scholar
  81. 81.
    Yue T-L, McKenna PJ, Gu J-L, Feurstein GZ: Interleukin-8 is chemotactic for vascular smooth muscle cells. Eur J Pham, 1993; 240:81–84.CrossRefGoogle Scholar
  82. 82.
    Xu LDJ, Kelvin GQ, Ye DD, Ben-Baruch A, Oppenheim JJ, Wang JM: Modulation of IL-8 receptorexpression on purified humanlymphocytes is associated with changed chemotactic responses to IL-8. J Leukocyte Biol 1995;57:335–342.PubMedGoogle Scholar
  83. 83.
    Jinquan T, Frydenberg J, Mukaida N, Bonde J, Larsen CG, Matsushima K, Thestrup-Pedersen K: Recombinant human growth-regulated oncogene-α induces T lymphocyte chemotaxis: a process regulated via IL-8 receptors by IFNγ, TNFα, IL-4, IL-10, and IL-13. J Immunol 1995;155:5359–5368.PubMedGoogle Scholar
  84. 84.
    Santantaria Babi LF, Moser B, Perez Soler MT, Moser R, Loetscher P, Villiger B, Blaser K, Hauser C: The interleukin-8 receptor B and CXC chemokines can mediate transendothelial migration of human skin homing T cells. Eur J Immunol 1996;26:2056–2061.CrossRefGoogle Scholar
  85. 85.
    Lloyd AR, Oppenheim JJ, Kelvin DJ, Taub DD: Chemokines regulate T cell adherence to recombinant adhesion molecules and extracellular matrix proteins. J Immunol 1996;156:932–938.PubMedGoogle Scholar
  86. 86.
    Jones SA, Dewald B, Clark-Lewis I, Baggiolini M: Chemokine antagonists that discriminate between interleukin-8 receptors. J Biol Chem 1997;272:16,166–16,169.Google Scholar
  87. 87.
    Moser B, Dewald B, Barella L, Shumacher C, Baggiolini M,Google Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • William A. Boisvert
    • 1
  • Linda K. Curnss
    • 1
    • 2
  • Robert A. Terkeltaub
    • 3
  1. 1.Department of ImmunologyThe Scrippes Research InstituteLa Joln
  2. 2.Department of Vascular BiologyThe Scripps Research InstituteLa Jolla
  3. 3.Department of Medicine VA Medical CenterUniversity of CaliforniaSan Diego

Personalised recommendations