Advertisement

Photodynamic therapy for pancreatic and biliary tract carcinoma

  • Lakshmana Ayaru
  • Stephen G. Bown
  • Stephen P. Pereira
Review Article

Abstract

The prognosis of patients with pancreatic and biliary tract cancer treated with conventional therapies such as stent insertion or chemotherapy is often poor, and new approaches are urgently needed. Surgery is the only curative treatment but is appropriate in less than 20% of cases, and even then it is associated with a 5-yr survival of less than 30% in selected series. Photodynamic therapy represents a novel treatment for pancreaticobiliary malignancy. It is a way of producing localized tissue necrosis with light, most conveninently from a low-power, red laser, after prior administration of a photosensitizing agent, thereby initiating a non-thermal cytotoxic effect and tissue necrosis. This review outlines the mechanisms of action of photodynamic therapy including direct cell death, vascular injury, and immune system activation, and summarizes the results of preclinical and clinical studies of photodynamic therapy for pancreaticobiliary malignancy.

Key Words

Pancreatic cancer cholangiocarcinoma ampullary carcinoma mechanisms photodynamic therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pahernik SA, Dellian M, Berr F, Tannapfel A, Wittekind C, Goetz AE. Distribution and pharmacokinetics of Photofrin in human bile duct cancer. J Photochem Photobiol B 1998;47:58–62.PubMedCrossRefGoogle Scholar
  2. 2.
    Mikvy P, Messman H, MacRobert AJ, et al. Photodynamic therapy of a transplanted pancreatic cancer model using meta-tetrahydroxyphenylchlorin (mTHPC). Br J Cancer 1997;76:713–718.PubMedGoogle Scholar
  3. 3.
    Evrard S, Keller P, Hajri A, et al. Experimental pancreatic cancer in the rat treated by photodynamic therapy. Br J Surg, 1994;81:1185–1189.PubMedCrossRefGoogle Scholar
  4. 4.
    Chatlani PT, Nuutinen PJ, Toda N, et al. Selective necrosis in hamster pancreatic tumors using photodynamic therapy with phthalocyanine photosensitization. Br J Surg 1992;79:786–790.PubMedCrossRefGoogle Scholar
  5. 5.
    Bown SG. Photodynamic therapy to scientists and clinicians—one world or two? J Photochem Photobiol B 1990;6:1–12.PubMedCrossRefGoogle Scholar
  6. 6.
    Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem Photobiol 1992;55:145–157.PubMedCrossRefGoogle Scholar
  7. 7.
    Vrouenraets MB, Visser GW, Snow GB, van Dongen GA. Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res 2003;23:505–522.PubMedGoogle Scholar
  8. 8.
    Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003;3:380–387.PubMedCrossRefGoogle Scholar
  9. 9.
    Weishaupt KR, Gomer CJ, Dougherty TJ. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res 1976;36:2326–2329.PubMedGoogle Scholar
  10. 10.
    Dougherty TJ, Gomer CJ, Henderson BW., et al. Photodynamic therapy. J Natl Cancer Inst 1998;90:889–905.PubMedCrossRefGoogle Scholar
  11. 11.
    Hopper C. Photodynamic therapy: a clinical reality in the treatment of cancer. Lancet Oncol 2000;1:212–219.PubMedCrossRefGoogle Scholar
  12. 12.
    Moan J, Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 1991;53:549–553.PubMedCrossRefGoogle Scholar
  13. 13.
    Nuutinen PJ, Chatlani PT, Bedwell J, MacRobert AJ, Phillips D, Bown SG. Distribution and photodynamic effect of disulphonated aluminium phthalocyanine in the pancreas and adjacent tissues in the Syrian golden hamster. Br J Cancer 1991;64:1108–1115.PubMedGoogle Scholar
  14. 14.
    Mlkvy P, Messmann H, Pauer M, et al. Distribution and photodynamic effects of meso-tetrahydroxyphenylchlorin (mTHPC) in the pancreas and adjacent tissues in the Syrian golden hamster. Br J Cancer 1996;73:1473–1479.PubMedGoogle Scholar
  15. 15.
    Wong Kee Song LM, Wang KK, Zinsmeister AR. Mono-L-aspartyl chlorin e6 (NPe6) and hematoporphyrin derivative (HpD) in photodynamic therapy administered to a human cholangiocarcinoma model. Cancer 1998;82:421–427.PubMedCrossRefGoogle Scholar
  16. 16.
    Zoepf T, Jakobs R, Rosenbaum A, Apel D, Arnold JC, Riemann JF. Photodynamic therapy with 5-aminolevulinic acid is not effective in bile duct cancer. Gastrointest Endosc 2001;54:763–766.PubMedCrossRefGoogle Scholar
  17. 17.
    Regula J, Ravi B, Bedwell J, MacRobert AJ, Bown SG. Photodynamic therapy using 5-aminolaevulinic acid for experimental pancreatic cancer—prolonged animal survival. Br J Cancer 1994;70:248–254.PubMedGoogle Scholar
  18. 18.
    Liu CD, Kwan D, Saxton RE, McFadden DW. Hypericin and photodynamic therapy decreases human pancreatic cancer in vitro and in vivo. J Surg Res 2000;93:137–143.PubMedCrossRefGoogle Scholar
  19. 19.
    Hajri A, Coffy S, Vallat F, Evrard S, Marescaux J, Aprahamian M. Human pancreatic carcinoma cells are sensitive to photodynamic therapy in vitro and in vivo. Br J Surg 1999;86:899–906.PubMedCrossRefGoogle Scholar
  20. 20.
    Krammer B. Vascular effects of photodynamic therapy. Anticancer Res 2001;21:4271–4277.PubMedGoogle Scholar
  21. 21.
    van Duijnhoven FH, Aalbers RI, Rovers JP, Terpstra OT, Kuppen PJ. The immunological consequences of photodynamic treatment of cancer, a literature review. Immunobiology 2003;207:105–113.PubMedCrossRefGoogle Scholar
  22. 22.
    Girotti AW. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 1998;39:1529–1542.PubMedGoogle Scholar
  23. 23.
    Wright A, Bubb WA, Hawkins CL, Davies MJ. Singlet oxygen-mediated protein oxidation: evidence for the formation of reactive side chain peroxides on tyrosine residues. Photochem Photobiol 2002;76:35–46.PubMedCrossRefGoogle Scholar
  24. 24.
    Ravanat JL, Di Mascio P, Martinez GR, Medeiros MH, Cadet J. Singlet oxygen induces oxidation of cellular DNA. J Biol Chem 2000;275:40,601–40,604.CrossRefGoogle Scholar
  25. 25.
    Roberts WG, Berns MW. In vitro photosensitization I. Cellular uptake and subcellular localization of mono-L-aspartyl chlorin e6, chloro-aluminum sulfonated phthalocyanine, and photofrin II. Lasers Surg Med 1989;9:90–101.PubMedCrossRefGoogle Scholar
  26. 26.
    Shulok JR, Wade MH, Lin CW. Subcellular localization of hematoporphyrin derivative in bladder tumor cells in culture. Photochem Photobiol 1990;51:451–457.PubMedCrossRefGoogle Scholar
  27. 27.
    Wilson BC, Olivo M, Singh G. Subcellular localization of Photofrin and aminolevulinic acid and photodynamic cross-resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to photofrin-mediated photodynamic therapy. Photochem Photobiol 1997;65:166–176.PubMedCrossRefGoogle Scholar
  28. 28.
    Kessel D, Luo Y, Deng Y, Chang CK. The role of subcellular localization in initiation of apoptosis by photodynamic therapy. Photochem Photobiol 1997;65:422–426.PubMedCrossRefGoogle Scholar
  29. 29.
    Luo Y, Kessel D. Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine. Photochem Photobiol 1997;66:479–483.PubMedCrossRefGoogle Scholar
  30. 30.
    Fabris C, Valduga G, Miotto G, et al. Photosensitization with zinc (II) phthalocyanine as a switch in the decision between apoptosis and necrosis. Cancer Res 2001;61:7495–7500.PubMedGoogle Scholar
  31. 31.
    Bown SG, Rogowska AZ, Whitelaw DE, et al. Photodynamic therapy for cancer of the pancreas. Gut 2002;50:549–557.PubMedCrossRefGoogle Scholar
  32. 32.
    Ortner ME, Caca K, Berr F, et al. Successful photodynamic therapy for nonresectable cholangiocarcinoma: a randomized prospective study. Gastroenterology 2003;125:1355–1363.PubMedCrossRefGoogle Scholar
  33. 33.
    Korbelik M, Krosl G. Enhanced macrophage cytotoxicity against tumor cells treated with photodynamic therapy. Photochem Photobiol 1994;60:497–502.PubMedCrossRefGoogle Scholar
  34. 34.
    Tromberg BJ, Kimel S, Orenstein A, et al. Tumor oxygen tension during photodynamic therapy. J Photochem Photobiol B 1990;5:121–126.PubMedCrossRefGoogle Scholar
  35. 35.
    Pogue BW, Braun RD, Lanzen JL, Erickson C, Dewhirst MW. Analysis of the heterogeneity of pO2 dynamics during photodynamic therapy with verteporfin. Photochem Photobiol 2001;74:700–706.PubMedCrossRefGoogle Scholar
  36. 36.
    Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407:249–257.PubMedCrossRefGoogle Scholar
  37. 37.
    Star WM, Marijnissen HP, van den Berg-Blok AE, Versteeg JA, Franken KA, Reinhold HS. Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers. Cancer Res 1986;46:2532–2540.PubMedGoogle Scholar
  38. 38.
    Nelson JS, Liaw LH, Orenstein A, Roberts WG, Berns MW. Mechanism of tumor destruction following photodynamic therapy with hematoporphyrin derivative, chlorin, and phthalocyanine. J Natl Cancer Inst 1988;80:1599–1605.PubMedCrossRefGoogle Scholar
  39. 39.
    Fingar VH, Wieman TJ, Wiehle SA, Cerrito PB. The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion. Cancer Res 1992;52:4914–4921.PubMedGoogle Scholar
  40. 40.
    Dolmans, D E, Kadambi A, Hill JS, et al. Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy. Cancer Res 2002;62:2151–2156.PubMedGoogle Scholar
  41. 41.
    Fingar VH, Siegel KA, Wieman TJ, Doak KW. The effects of thromboxane inhibitors on the microvascular and tumor response to photodynamic therapy. Photochem Photobiol 1993;58:393–399.PubMedCrossRefGoogle Scholar
  42. 42.
    Fingar VH, Wieman TJ, Doak KW. Role of thromboxane and prostacyclin release on photodynamic therapy-induced tumor destruction. Cancer Res 1990;50:2599–2603.PubMedGoogle Scholar
  43. 43.
    Gilissen MJ, van de Merbel-de Wit LE, Star WM, Koster JF, Sluiter W. Effect of photodynamic therapy on the endothelium-dependent relaxation of isolated rat aortas. Cancer Res 1993;53:2548–2552.PubMedGoogle Scholar
  44. 44.
    Agarwal ML, Larkin HE, Zaidi SI, Mukhtar H, Oleinick NL. Phospholipase activation triggers apoptosis in photosensitized mouse lymphoma cells. Cancer Res 1993;53:5897–5902.PubMedGoogle Scholar
  45. 45.
    Shumaker BP, Hetzel FW. Clinical laser photodynamic therapy in the treatment of bladder carcinoma. Photochem Photobiol 1987;46:899–901.PubMedCrossRefGoogle Scholar
  46. 46.
    de Vree WJ, Essers MC, de Bruijn HS, Star WM, Koster JF, Sluiter W. Evidence for an important role of neutrophils in the efficacy of photodynamic therapy in vivo. Cancer Res 1996a;56:2908–2911.PubMedGoogle Scholar
  47. 47.
    Gollnick SO, Liu X, Owczarczak B, Musser DA, Henderson BW. Altered expression of interleukin 6 and interleukin 10 as a result of photodynamic therapy in vivo. Cancer Res 1997;57:3904–3909.PubMedGoogle Scholar
  48. 48.
    Korbelik M, Krosl G, Krosl J, Dougherty GJ. The role of host lymphoid populations in the response of mouse EMT6 tumor to photodynamic therapy. Cancer Res 1996;56:5647–5652.PubMedGoogle Scholar
  49. 49.
    Korbelik M, Cecic I. Contribution of myeloid and lymphoid host cells to the curative outcome of mouse sarcoma treatment by photodynamic therapy. Cancer Lett 1999;137:91–98.PubMedCrossRefGoogle Scholar
  50. 50.
    Nakanuma YHM, Terada T. Clinical and Pathologic Features of Cholangiocarcinoma, Churchill Livingstone, New York, NY, 1997, pp. 279–290.Google Scholar
  51. 51.
    Khan SA, Davidson BR, Goldin R, et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: consensus document. Gut 2002;51(Suppl 6):VI1–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Khan SA, Taylor-Robinson SD, Toledano MB, Beck A, Elliott P, Thomas HC. Changing international trends in mortality rates for liver, biliary and pancreatic tumors. J Hepatol 2002;37:806–813.PubMedCrossRefGoogle Scholar
  53. 53.
    Nair S, Shiv Kumar K, Thuluvath PJ, Shivakumar KS, Shiva Kumar K. Mortality from hepatocellular and biliary cancers: changing epidemiological trends. Am J Gastroenterol 2002;97:167–171.PubMedCrossRefGoogle Scholar
  54. 54.
    Patel T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology 2001;33:1353–1357.PubMedCrossRefGoogle Scholar
  55. 55.
    Taylor-Robinson SD, Toledano MB, Arora S, et al. Increase in mortality rates from intrahepatic cholangiocarcinoma in England and Wales 1968–1998. Gut 2001;48:816–820.PubMedCrossRefGoogle Scholar
  56. 56.
    Khan SA, Carmichael PL, Taylor-Robinson SD, Habib N, Thomas HC. DNA adducts, detected by 32P postlabelling, in human cholangiocarcinoma. Gut 2003;52:586–591.PubMedCrossRefGoogle Scholar
  57. 57.
    de Groen PC, Gores GJ, LaRusso NF, Gunderson LL, Nagorney DM. Biliary tract cancers. N Engl J Med 1999;341:1368–1378.PubMedCrossRefGoogle Scholar
  58. 58.
    Bismuth H, Nakache R, Diamond T. Management strategies in resection for hilar cholangiocarcinoma. Ann Surg 1992;215:31–38.PubMedCrossRefGoogle Scholar
  59. 59.
    Henson DE, Albores-Saavedra J, Corle D. Carcinoma of the extrahepatic bile ducts. Histologic types, stage of disease, grade, and survival rates. Cancer 1992;70:1498–1501.PubMedCrossRefGoogle Scholar
  60. 60.
    Madariaga JR, Iwatsuki S, Todo S, Lee RG, Irish W, Starzl TE. Liver resection for hilar and peripheral cholangiocarcinomas: a study of 62 cases. Ann Surg 1998;227:70–79.PubMedCrossRefGoogle Scholar
  61. 61.
    Reding R, Buard JL, Lebeau G, Launois B. Surgical management of 552 carcinomas of the extrahepatic bile ducts (gallbladder and periampullary tumors excluded). Results of the French Surgical Association Survey. Ann Surg 1991;213:236–241.PubMedCrossRefGoogle Scholar
  62. 62.
    Polydorou AA, Cairns SR, Dowsett JF, et al. Palliation of proximal malignant biliary obstruction by endoscopic endoprosthesis insertion. Gut 1991;32:685–689.PubMedCrossRefGoogle Scholar
  63. 63.
    Luman W, Cull A, Palmer KR. Quality of life in patients stented for malignant biliary obstructions. Eur J Gastroenterol Hepatol 1997;9:481–484.PubMedGoogle Scholar
  64. 64.
    Hejna M, Pruckmayer M, Raderer M. The role of chemotherapy and radiation in the management of biliary cancer: a review of the literature. Eur J Cancer 1998;34:977–986.PubMedCrossRefGoogle Scholar
  65. 65.
    Ede RJ, Williams SJ, Hatfield AR, McIntyre S, Mair G. Endoscopic management of inoperable cholangiocarcinoma using iridium-192. Br J Surg 1989;76:867–869.PubMedCrossRefGoogle Scholar
  66. 66.
    Karani J, Fletcher M, Brinkley D, Dawson JL, Williams R, Nunnerley H. Internal biliary drainage and local radiotherapy with iridium-192 wire in treatment of hilar cholangiocarcinoma. Clin Radiol 1985;36:603–606.PubMedCrossRefGoogle Scholar
  67. 67.
    Foo ML, Gunderson LL, Bender CE, Buskirk SJ. External radiation therapy and transcatheter iridium in the treatment of extrahepatic bile duct carcinoma. Int J Radiat Oncol Biol Phys 1997;39:929–935.PubMedGoogle Scholar
  68. 68.
    Vallis KA, Benjamin IS, Munro AJ, et al. External beam and intraluminal radiotherapy for locally advanced bile duct cancer: role and tolerability. Radiother Oncol 1996;41:61–66.PubMedGoogle Scholar
  69. 69.
    Bowling TE, Galbraith SM, Hatfield AR, Solano J, Spittle MF. A retrospective comparison of endoscopic stenting alone with stenting and radiotherapy in non-resectable cholangiocarcinoma. Gut 1996;39:852–855.PubMedCrossRefGoogle Scholar
  70. 70.
    Ricci E, M. M., Conigliaro R, Sassatelli R, Palmieri T, D’Abbiero A. Endoscopic drainage and HDR brachytherapy in palliation of obstructive pancreatic and bile duct cancers: a prospective randomized study. Ital J Gastroenterol Hepatol 1998;30 (Abstract).Google Scholar
  71. 71.
    Phillips B, Sackett D. Website: (http://cebm.net/index.asp). Oxford Centre for Evidence-based Medicine, 2001.Google Scholar
  72. 72.
    Berenbaum MC, Bonnett R, Scourides PA. In vivo biological activity of the components of hematoporphyrin derivative. Br J Cancer 1982;45:571–581.PubMedGoogle Scholar
  73. 73.
    McCaughan JS Jr, Mertens BF, Cho C, Barabash RD, Payton HW. Photodynamic therapy to treat tumors of the extrahepatic biliary ducts. A case report. Arch Surg 1991;126:111–113.PubMedGoogle Scholar
  74. 74.
    Ortner MA, Liebetruth J, Schreiber S, et al. Photodynamic therapy of nonresectable cholangiocarcinoma. Gastroenterology 1998;114:536–542.PubMedCrossRefGoogle Scholar
  75. 75.
    Berr F, Wiedmann M, Tannapfel A, et al. Photodynamic therapy for advanced bile duct cancer: evidence for improved palliation and extended survival. Hepatology 2000;31:291–298.PubMedCrossRefGoogle Scholar
  76. 76.
    Rumalla A, Baron TH, Wang KK, Gores GJ, Stadheim LM, de Groen PC. Endoscopic application of photodynamic therapy for cholangiocarcinoma. Gastrointest Endosc 2001;53:500–504.PubMedCrossRefGoogle Scholar
  77. 77.
    Mertz HR, Sechopoulos P, Delbeke D, Leach SD. EUS, PET, and CT scanning for evaluation of pancreatic adenocarcinoma. Gastrointest Endosc 2000;52:367–371.PubMedCrossRefGoogle Scholar
  78. 78.
    Dumoulin FL, Gerhardt T, Fuchs S, et al. Phase II study of photodynamic therapy and metal stent as palliative treatment for nonresectable hilar cholangiocarcinoma. Gastrointest Endosc 2003;57:860–867.PubMedCrossRefGoogle Scholar
  79. 79.
    Wong M, Alexander GL, Gutta K. Chlorin E6 and hematoporphyrin derivate (HPD) on photodynamic therapy of a human cholangiocarcinoma model. Gastroenterology 1996;110:A595.Google Scholar
  80. 80.
    Cancer Research UK Biliary Tree (gallbladder and bile duct). Website: (http://www.cancerhelp.org.uk/trials/trials/default.asp), 2003.Google Scholar
  81. 81.
    Gores GJ. A spotlight on cholangiocarcinoma. Gastroenterology 2003;125:1536–1538.PubMedCrossRefGoogle Scholar
  82. 82.
    Flamm CR, Mark DH, Aronson N. Evidence-based assessment of ERCP approaches to managing pancreaticobiliary malignancies. Gastrointest Endosc 2002;56:S218–225.PubMedCrossRefGoogle Scholar
  83. 83.
    Kaassis M, Boyer J, Dumas R, et al. Plastic or metal stents for malignant stricture of the common bile duct? Results of a randomized prospective study. Gastrointest Endosc 2003;57:178–182.PubMedCrossRefGoogle Scholar
  84. 84.
    Davids PH, Groen AK, Rauws EA, Tytgat GN, Huibregtse K. Randomized trial of self-expanding metal stents versus polyethylene stents for distal malignant biliary obstruction. Lancet 1992;340:1488–1492.PubMedCrossRefGoogle Scholar
  85. 85.
    Prat F, Chapat O, Ducot B, et al. A randomized trial of endoscopic drainage methods for inoperable malignant strictures of the common bile duct. Gastrointest Endosc 1998;47:1–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Schmassmann A, von Gunten E, Knuchel J, Scheurer U, Fehr HF, Halter F. Wallstents versus plastic stents in malignant biliary obstruction: effects of stent patency of the first and second stent on patient compliance and survival. Am J Gastroenterol 1996;91:654–659.PubMedGoogle Scholar
  87. 87.
    Yeoh KG, Zimmerman MJ, Cunningham JT, Cotton PB. Comparative costs of metal versus plastic biliary stent strategies for malignant obstructive jaundice by decision analysis. Gastrointest Endosc 1999;49:466–471.PubMedCrossRefGoogle Scholar
  88. 88.
    Kahn SA, Davidson BR, Goldin R, et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: consensus document. Gut 2002;51:vi1-vi9.CrossRefGoogle Scholar
  89. 89.
    Rogowska AZ, Hatfield AR, Ripley AM, Buonaccorsi G, Bown SG. Photodynamic therapy for recanalisation of occluded biliary metal stents. Gastroenterology 1999;116:G0123 (Abstract).Google Scholar
  90. 90.
    Zoepf T, Jakobs R, Arnold JC, Apel D, Rosenbaum A, Riemann J.F. Photodynamic therapy for palliation of nonresectable bile duct cancer—preliminary results with a new diode laser system. Am J Gastroenterol 2001;96:2093–2097.PubMedGoogle Scholar
  91. 91.
    Berr F, Tannapfel A, Lamesch P, et al. Neoadjuvant photodynamic therapy before curative resection of proximal bile duct carcinoma. J Hepatol 2000;32:352–357.PubMedCrossRefGoogle Scholar
  92. 92.
    Wiedmann M, Caca K, Berr F, et al. Neoadjuvant photodynamic therapy as a new approach to treating hilar cholangiocarcinoma: a phase II pilot study. Cancer 2003;97:2783–2790.PubMedCrossRefGoogle Scholar
  93. 93.
    Abulafi AM, Allardice JT, Williams NS, van Someren N, Swain CP, Ainley C. Photodynamic therapy for malignant tumors of the ampulla of Vater. Gut 1995;36:853–856.PubMedCrossRefGoogle Scholar
  94. 94.
    Jemal A, Thomas A, Murray T, Thun M. Cancer statistics, 2002. CA Cancer J Clin 2002;52:23–47.PubMedCrossRefGoogle Scholar
  95. 95.
    Parkin DM, Pisani P, Ferlay J. Global cancer statistics. CA Cancer J Clin 1999;49:33–64, 31.PubMedCrossRefGoogle Scholar
  96. 96.
    Warshaw AL, Fernandez-del Castillo C. Pancreatic carcinoma. N Engl J Med 1992;326:455–465.PubMedCrossRefGoogle Scholar
  97. 97.
    Bramhall SR, Neoptolemos JP. Advances in diagnosis and treatment of pancreatic cancer. Gastroenterologist 1995;3:301–310.PubMedGoogle Scholar
  98. 98.
    Stojadinovic A, Brooks A, Hoos A, Jaques DP, Conlon KC, Brennan MF. An evidence-based approach to the surgical management of resectable pancreatic adenocarcinoma. J Am Coll Surg 2003;196:954–964.PubMedCrossRefGoogle Scholar
  99. 99.
    Burris HA 3rd, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997;15:2403–2413.PubMedGoogle Scholar
  100. 100.
    Hawes RH, Xiong Q, Waxman I, Chang KJ, Evans DB, Abbruzzese JL. A multispecialty approach to the diagnosis and management of pancreatic cancer. Am J Gastroenterol 2000;95:17–31.PubMedCrossRefGoogle Scholar
  101. 101.
    Schroder T, Chen IW, Sperling M, Bell RH Jr, Brackett K, Joffe SN. Hematoporphyrin derivative uptake and photodynamic therapy in pancreatic carcinoma. J Surg Oncol 1988;38:4–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Chan HH, Nishioka NS, Mino M, et al. EUS-guided photodynamic therapy of the pancreas: A pilot study. Gastrointest Endosc 2004;59:95–99.PubMedCrossRefGoogle Scholar
  103. 103.
    Mang TS, Wieman TJ. Photodynamic therapy in the treatment of pancreatic carcinoma: dihematoporphyrin ether uptake and photobleaching kinetics. Photochem Photobiol 1987;46:853–858.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Lakshmana Ayaru
    • 1
  • Stephen G. Bown
    • 2
  • Stephen P. Pereira
    • 1
  1. 1.Institute of Hepatology, Department of MedicineRoyal Free & University College London Medical SchoolLondonUnited Kingdom
  2. 2.National Medical Laser Centre, Department of SurgeryRoyal Free & University College London Medical SchoolLondonUnited Kingdom

Personalised recommendations