Endocrine Pathology

, Volume 13, Issue 4, pp 271–288 | Cite as

Molecular pathobiology of thyroid neoplasms

Clinical Research

Abstract

Tumors of thyroid follicular cells provide a very interesting model to understand the development of human cancer. It is becoming apparent that distinct molecular events are associated with specific stages in a multistep tumorigenic process with good genotype/phenotype correlation. For instance, mutations of the gsp and thyroid-stimulating hormone receptor genes are associated with benign hyperfunctioning thyroid nodules and adenomas while alterations of other specific genes, such as oncogenic tyrosine kinase alterations (RET/PTC, TRK) in papillary carcinoma and the newly discovered PAX8/peroxisome proliferator-activated receptor γ rearrangement, are distinctive features of cancer. Although activating RAS mutations occur at all stages of thyroid tumorigenesis, evidence is accumulating that they may also play an important role in tumor progression, a role that is well documented for p53. Environmental factors (iodine deficiency, ionizing radiations) have been shown to play a crucial role in promoting the development of thyroid cancer, influencing both its genotypic and phenotypic features. It is possible that the follicular thyroid cell has unique ways to respond to DNA damage. Similarly to leukemia or sarcomas (and unlike most epithelial cancers), numerous specific rearrangements are being discovered in thyroid cancer suggesting preferential activation of DNA repair instead of cell death programs after environmentally induced genetic alterations.

Key Words

Thyroid tumor oncogene tumor suppressor gene chromosomal rearrangement tyrosine kinase papillary thyroid carcinoma follicular carcinoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Derwahl M, Studer H. Multinodular goitre: ‘much more to it than simply iodine deficiency’. Baillieres Best Pract Res Clin Endocrinol Metab 14:577–600, 2000.PubMedCrossRefGoogle Scholar
  2. 2.
    Dumont JE, Lamy F, Roger P, Maenhaut C. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiol Rev 72:667–697, 1992.PubMedGoogle Scholar
  3. 3.
    Wynford-Thomas D. Origin and progression of thyroid epithelial tumours: cellular and molecular mechanisms. Horm Res 47:145–157, 1997.PubMedGoogle Scholar
  4. 4.
    Bignell GR, Canzian F, Shayeghi M, et al. Familial nontoxic multinodular thyroid goiter locus maps to chromosome 14q but does not account for familial nonmedullary thyroid cancer. Am J Hum Genet 61:1123–1130, 1997.PubMedCrossRefGoogle Scholar
  5. 5.
    Lin JD. The role of apoptosis in autoimmune thyroid disorders and thyroid cancer. BMJ 322:1525–1527, 2001.PubMedCrossRefGoogle Scholar
  6. 6.
    Moretti F, Nanni S, Pontecorvi A. Molecular pathogenesis of thyroid nodules and cancer. Baillieres Best Pract Res Clin Endocrinol Metab 14:517–539, 2000.PubMedCrossRefGoogle Scholar
  7. 7.
    Alsanea O, Clark OH. Familial thyroid cancer. Curr Opin Oncol 13:44–51, 2001.PubMedCrossRefGoogle Scholar
  8. 8.
    Krohn K, Paschke R. Clinical review 133: progress in understanding the etiology of thyroid autonomy. J Clin Endocrinol Metab 86(7):3336–3345, 2001.PubMedCrossRefGoogle Scholar
  9. 9.
    Michiels FM, Caillou B, Talbot M, et al. Oncogenic potential of guanine nucleotide stimulatory factor alpha subunit in thyroid glands of transgenic mice. Proc Natl Acad Sci USA 91:10,488–10,492, 1994.CrossRefGoogle Scholar
  10. 10.
    Krohn K, Wohlgemuth S, Gerber H, Paschke R. Hot microscopic areas of iodine-deficient euthyroid goitres contain constitutively activating TSH receptor mutations. J Pathol 192(1):37–42, 2000.PubMedCrossRefGoogle Scholar
  11. 11.
    Eszlinger M, Krohn K, Paschke R. Complementary DNA expression array analysis suggests a lower expression of signal transduction proteins and receptors in cold and hot thyroid nodules. J Clin Endocrinol Metab 86(10):4834–4842, 2001.PubMedCrossRefGoogle Scholar
  12. 12.
    Russo D, Tumino S, Arturi F, Vigneri P, Grasso G, Pontecorvi A, Filetti S, Belfiore A. Detection of an activating mutation of the thyrotropin receptor in a case of an autonomously hyperfunctioning thyroid insular carcinoma. J Endocrinol Metab 82:735–738, 1997.CrossRefGoogle Scholar
  13. 13.
    Lemoine NR, Mayall ES, Wyllie FS, Farr CJ, Hughes D, Padua RA, Thurston V, Williams ED, Wynford-Thomas D. Activated ras oncogenes in human thyroid cancers. Cancer Res 48:4459–4463, 1988.PubMedGoogle Scholar
  14. 14.
    Lemoine NR, Mayall ES, Wyllie FS, Williams D, Goyns M, Stringer B, Wynford-Thomas D. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 4:159–164, 1989.PubMedGoogle Scholar
  15. 15.
    Namba H, Rubin SA, Fagin JA. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol 4:1474–1479, 1990.PubMedGoogle Scholar
  16. 16.
    Suarez HG, du Villard JA, Severino M, Caillou B, Schlumberger M, Tubiana M, Parmentier C, Monier R. Presence of mutations in all three ras oncogenes in human thyroid tumors. Oncogene 5:565–570, 1990.PubMedGoogle Scholar
  17. 17.
    Manenti G, Pilotti FC, Re FC, Della Porta G, Pierotti MA. Selective activation of ras oncogenes in follicular and undifferentiated carcinomas. Eur J Cancer 30:987–993, 1994.CrossRefGoogle Scholar
  18. 18.
    Ezzat S, Zheng L, Kolenda J, Safarian A, Freeman JL, Asa SL. Prevalence of activating ras mutations in morphologically characterized thyroid nodules. Thyroid 6:409–416, 1996.PubMedGoogle Scholar
  19. 19.
    Shi YF, Zou MJ, Schidt H, Juhasz F, Stensky V, Robb D, Farid NR. High rates of ras codon 61 mutation in thyroid tumors in an iodide-deficient area. Cancer Res 51:2690–2693, 1991.PubMedGoogle Scholar
  20. 20.
    Basolo F, Pisaturo F, Pollina LE, Fontanini G, Elisei R, Molinaro E, Iacconi P, Miccoli P, Pacini F. N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid 10:19–23, 2000.PubMedGoogle Scholar
  21. 21.
    Motoi N, Sakamoto A, Yamochi T, Horiuchi H, Motoi T, Machinami R. Role of ras mutation in the progression of thyroid carcinoma of follicular epithelial origin. Pathol Res Pract 196:1–7, 2000.PubMedGoogle Scholar
  22. 22.
    Basolo F, Pinchera A, Fugazzola L, Fontanini G, Elisei R, Romei C, Pacini F. Expression of p21 ras protein as a prognostic factor in papillary thyroid cancer. Eur J Cancer 30:171–174, 1994.CrossRefGoogle Scholar
  23. 23.
    Rochefort P, Caillou B, Michiels FM, Ledent C, Talbot M, Schlumberger M, Lavelle F, Monier R, Feunteun J. Thyroid pathologies in transgenic mice expressing a human activated ras gene driven by a thyroglobulin promoter. Oncogene 12:111–118, 1996.PubMedGoogle Scholar
  24. 24.
    Tanaka K, Nagayama Y, Nakano T Takamura N, Namba H, Fukada S, Kuma K, Yamashita S, Niwa M. Expression profile of receptor-type protein tyrosine kinase genes in the human thyroid. Endocrinology 139:852–858, 1998.PubMedCrossRefGoogle Scholar
  25. 25.
    Airaksinen, MS. Titievsky A, Saarma M. GDNF family neurotrophic factor signaling: four masters, one servant? Mol Cell Neurosci 13:313–325, 1999.PubMedCrossRefGoogle Scholar
  26. 26.
    Schneider R. The human proto-oncogene ret: a communicative cadherin? Trends Biochem Sci 17:468, 469, 1992.PubMedCrossRefGoogle Scholar
  27. 27.
    Tahira T, Ishizaka Y, Itoh F, et al. Characterization of ret proto-oncogene mRNA encoding two isoforms of the protein product in a human neuroblastoma cell line. Oncogene 5:97–102, 1990.PubMedGoogle Scholar
  28. 28.
    Santoro M, Rosati R, Grieco M, et al. The RET proto-oncogene is consistently expressed in human pheochromocytomas and thyroid medullary carcinomas. Oncogene 5:1995–8, 1990.Google Scholar
  29. 29.
    Eng C. RET proto-oncogene in the development of human cancer. J Clin Oncol 17:380–393, 1999.PubMedGoogle Scholar
  30. 30.
    Romeo G, Ronchetto P, Luo Y, Barone V, Seri M, Ceccherini I, Pasini B, Bocciardi R, Lerone M, Kaariainen H. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung’s disease. Nature 367:377, 378, 1994.PubMedCrossRefGoogle Scholar
  31. 31.
    Fusco A, Grieco M, Santoro M, Berlingieri MT, Pilotti S, Pierotti MA, Della Porta G, Vecchio G. A new oncogene in human thyroid papillary carcinomas and their lymphnodal metastases. Nature 328:170–172, 1987.PubMedCrossRefGoogle Scholar
  32. 32.
    Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, Pierotti MA, Della Porta G, Fusco A, Vecchio G. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60:557–563, 1990.PubMedCrossRefGoogle Scholar
  33. 33.
    Santoro M, Carlomagno F, Hay ID, et al. RET oncogene activation in human thyroid neoplasms is restricted to the papillary carcinoma subtype. J Clin Invest 89:1517–1522, 1992.PubMedGoogle Scholar
  34. 34.
    Santoro M, Sabino N, Ishizaka Y, Ushijima T, Carlomagno F, Cerrato A, Grieco M, Battaglia C, Martelli ML, Paulin C, Fabien N, Sugimura T, Fusco A, Nagao M. Involvement of RET oncogene in human tumours: specificity of RET activation to thyroid tumours. Br J Cancer 68:460–464, 1993.PubMedGoogle Scholar
  35. 35.
    Tallini G, Asa SL. RET oncogene activation in papillary thyroid carcinoma. Adv Anatom Pathol 8:345–354, 2001.CrossRefGoogle Scholar
  36. 36.
    Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290:138–141, 2000.PubMedCrossRefGoogle Scholar
  37. 37.
    Viglietto G, Chiappetta G, Fukunaga FH, Tallini G, Rigopoulou D, Visconti R, Mastro A, Santoro M, Fusco A. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene 1:1207–1210, 1995.Google Scholar
  38. 38.
    Nikiforov Y, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct patterns of ret rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 57:1690–1694, 1997.PubMedGoogle Scholar
  39. 39.
    Basolo F, Giannini R, Monaco C, et al. Potent mitogenicity of the RET/PTC3 oncogene correlates with its prevalence in tall-cell variant of papillary thyroid carcinoma. Am J Pathol 160:247–254, 2002.PubMedGoogle Scholar
  40. 40.
    Rabes HM, Demidchik EP, Sidorow JD, Lengfelder E, Beimfohr C, Hoelzel D, Klugbauer S. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res 6:1093–1103, 2000.PubMedGoogle Scholar
  41. 41.
    Santoro M, Chiappetta G, Cerrato A, Salvatore D, Zhang L, Manzo G, Picone A, Portella G, Santelli G, Vecchio G, Fusco A. Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene 12:1821–1826, 1996.PubMedGoogle Scholar
  42. 42.
    Powell DJ Jr, Russell J, Nibu K, Li G, Rhee E, Liao M, Goldstein M, Keane WM, Santoro M, Fusco A, Rothstein JL. The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res 58:5523–5528, 1998.PubMedGoogle Scholar
  43. 43.
    Bongarzone I, Vigneri P, Mariani L, Collins P, Pilotti S, Pierotti MA. RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: correlation with clinico-pathological features. Clin Cancer Res 4:223–228, 1998.PubMedGoogle Scholar
  44. 44.
    Basolo F, Molinaro E, Agate L, Pinchera A, Pollina L, Chiappetta G, Monaco C, Santoro M, Fusco A, Miccoli P, Elisei R, Capezzone M, Pacini F. RET protein expression has no prognostic impact on the long-term outcome of papillary thyroid carcinoma. Eur J Endocrinol 145:599–604, 2001.PubMedCrossRefGoogle Scholar
  45. 45.
    Tallini G, Santoro M, Helie M, Carlomagno F, Salvatore G, Chiappetta G, Carcangiu ML, Fusco A. RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res 4:287–294, 1998.PubMedGoogle Scholar
  46. 46.
    Santoro M, Papotti M, Chiappetta G, Garcia-Rostan G, Volante M, Johnson C, Camp RL, Pentimalli F, Monaco C, Herrero A, Carcangiu ML, Fusco A, Tallini G. Ret activation and clinicopathologic features in poorly differentiated thyroid tumors. J Clin Endocrinol Metab 87:370–379, 2002.PubMedCrossRefGoogle Scholar
  47. 47.
    Pierotti MA. Chromosomal rearrangements in thyroid carcinomas: a recombination or death dilemma. Cancer Lett 166:1–7, 2001.PubMedCrossRefGoogle Scholar
  48. 48.
    Beimfohr C, Klugbauer S, Demidchik EP, Lengfelder E, Rabes HM. NTRK1 re-arrangement in papillary thyroid carcinomas of children after the Chernobyl reactor accident. Int J Cancer 80:842–847, 1999.PubMedCrossRefGoogle Scholar
  49. 49.
    McGregor LM, McCune BK, Graff JR, McDowell PR, Romans KE, Yancopoulos GD, Ball DW, Baylin SB, Nelkin BD. Roles of TRK family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci USA 96:4540–4545, 1999.PubMedCrossRefGoogle Scholar
  50. 50.
    Di Renzo MF, Olivero M, Serini G, Orlandi F, Pilotti S, Belfiore A, Costantino A, Vigneri R, Angeli A, Pierotti MA. Overexpression of the c-MET/HGF receptor in human thyroid carcinomas derived from the follicular epithelium. J Endocrinol Invest 18:134–139, 1995.PubMedGoogle Scholar
  51. 51.
    Huang Y, Prasad M, Lemon WJ, Hampel H, Wright FA, Kornacker K, LiVolsi V, Frankel W, Kloos RT, Eng C, Pellegata NS, de la Chapelle A. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci USA 98(26):15,044–15,049, 2001.CrossRefGoogle Scholar
  52. 52.
    Ivan M, Bond JA, Prat M, Comoglio PM, Wynford-Thomas D. Activated ras and ret oncogenes induce over-expression of c-met (hepatocyte growth receptor) in human thyroid epithelial cells. Oncogene 14:2417–2423, 1997.PubMedCrossRefGoogle Scholar
  53. 53.
    Chen BK, Ohtsuki Y, Furihata M, Takeuchi T, Iwata J, Liang SB, Sonobe H. Overexpression of c-Met protein in human thyroid tumors correlated with lymph node metastasis and clinicopathologic stage. Pathol Res Pract 195:427–433, 1999.PubMedGoogle Scholar
  54. 54.
    Belfiore A, Gangemi P, Costantino A, Russo G, Santonocito GM, Ippolito O, Di Renzo MF, Comoglio P, Fiumara A, Vigneri R. Negative/low expression of Met/hepatocyte growth factor receptor identifies papillary thyroid carcinomas with high risk of distant metastases. J Clin Endocrinol Metab 82:2322–2328, 1997.PubMedCrossRefGoogle Scholar
  55. 55.
    Ruco LP, Ranalli T, Marzullo A Bianco P, Prat M, Comoglio PM, Baroni CD. Expression of met protein in thyroid tumours. J Pathol 180:266–270, 1996.PubMedCrossRefGoogle Scholar
  56. 56.
    Ringel MD, Hayre N, Saito J, Saunier B, Schuppert F, Burch H, Bernet V, Burman KD, Kohn LD, Saji M. Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res 61(16):6105–6111, 2001.PubMedGoogle Scholar
  57. 57.
    Dierick H, Bejsovec A. Cellular mechanisms of wingless/Wnt signal transduction. Curr Top Dev Biol 43:153–190, 1999.PubMedGoogle Scholar
  58. 58.
    Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 153(2):333–339, 1998.PubMedGoogle Scholar
  59. 59.
    Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 287(5458):1606–1609, 2000.PubMedCrossRefGoogle Scholar
  60. 60.
    Miller JR, Hocking AM, Brown JD, Moon RT. Mechanism and function of signal transduction by the Wnt/β-catenin and Wnt/Ca2+ pathways. Oncogene 18:7860–7872, 1999.PubMedCrossRefGoogle Scholar
  61. 61.
    Sparks AB, Morin PJ, Vogelstein B, Kinzler KW. Mutational analysis of the APC/beta-catenin /Tcf pathway in colorectal cancer. Cancer Res 58:1130–1134, 1998.PubMedGoogle Scholar
  62. 62.
    Tejpar S, Nollet F, Li C, Wunder JS, Michils G, dal Cin P, Van Cutsem E, Bapat B, van Roy F, Cassiman JJ, Alman BA. Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene 18(47):6615–6620, 1999.PubMedCrossRefGoogle Scholar
  63. 63.
    Iwao K, Miyoshi Y, Nawa G, Yoshikawa H, Ochi T, Nakamura Y. Frequent beta-catenin abnormalities in bone and soft-tissue tumors. Jpn J Cancer Res 90(2):205–209, 1999.PubMedGoogle Scholar
  64. 64.
    Cerrato A, Fulciniti F, Avallone A, Benincasa G, Palombini L, Grieco M. Beta- and gamma-catenin expression in thyroid carcinomas. J Pathol 185(3):267–272, 1998.PubMedCrossRefGoogle Scholar
  65. 65.
    Garcia-Rostan G, Camp RL, A Herrero A, Carcangiu ML, DL Rimm DL, Tallini G. β-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression and ctnnb1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol 158:987–996, 2001.PubMedGoogle Scholar
  66. 66.
    Colletta G, Sciacchitano S, Palmirotta R, Ranieri A, Zanella E, Cama A, Costantini RM, Battista P, Pontecorvi A. Analysis of adenomatous polyposis coli gene in thyroid tumours. Br J Cancer 70:1085–1088, 1994.PubMedGoogle Scholar
  67. 67.
    Mueller E, Smith M, Sarraf P, Kroll T, Aiyer A, Kaufman DS, Oh W, Demetri G, Figg WD, Zhou XP, Eng C, Spiegelman BM, Kantoff PW. Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. Proc Natl Acad Sci USA 97(20):10,990–10,995, 2000.Google Scholar
  68. 68.
    Macchia PE, Lapi P, Krude H, Pirro MT, Missero C, Chiovato L, Souabni A, Baserga M, Tassi V, Pinchera A, Fenzi G, Gruters A, Busslinger M, Di Lauro R. PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nat Genet 19:83–86, 1998.PubMedCrossRefGoogle Scholar
  69. 69.
    Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, Fletcher JA. PAX8-PPARγ1 oncogene fusion in human thyroid carcinoma. Science 289(5483):1357–1360, 2000.PubMedCrossRefGoogle Scholar
  70. 70.
    Nikiforova MN, Lynch RA, Biddinger PW, Dorn GW, Nikiforov YE. PAX8-PPARg rearrangements and RAS mutations in thyroid follicular and hurthle cell tumors: towards the molecular-histological classification of thyroid neoplasms. Lab Invest 82:118A, 2002.Google Scholar
  71. 71.
    Terrier P, Sheng ZM, Schlumber M, Tubiana M, Caillou B, Travagli JP, Fragu P, Parmentier C, Riou G. Structure and expression of c-myc and c-fos proto-oncogene in thyroid carcinomas. Br J Cancer 57:43–47, 1988.PubMedGoogle Scholar
  72. 72.
    Battista S, de Nigris F, Fedele M, Chiappetta G, Scala S, Vallone D, Pierantoni GM, Mega T, Santoro M, Viglietto G, Verde P, Fusco A, Megar T. Increase in AP-1 activity is a general event in thyroid cell transformation in vitro and in vivo. Oncogene 17:377–385, 1998.PubMedCrossRefGoogle Scholar
  73. 73.
    Chiappetta G, Bandiera A, Berlingieri MT, Visconti R, Manfioletti G, Battista S, Martinez-Tello FJ, Santoro M, Giancotti V, Fusco A. The expression of the high mobility group HMGI(Y) proteins correlates with the malignant phenotype of human thyroid neoplasms. Oncogene 10:1307–1314, 1995.PubMedGoogle Scholar
  74. 74.
    Chiappetta G, Tallini G, DeBiasio MC, et al. Detection of high mobility group I HMGI(Y) protein in the diagnosis of thyroid tumors: HMGI(Y) expression represents a potential diagnostic indicator of carcinoma. Cancer Res 58:4193–4198, 1998.PubMedGoogle Scholar
  75. 75.
    Wang S, Lloyd RV, Hutzler MJ, Safran MS, Patwardhan NA, Khan A. The role of cell cycle regulatory protein, cyclin D1, in the progression of thyroid cancer. Mod Pathol 13:882–887, 2000.PubMedCrossRefGoogle Scholar
  76. 76.
    Erickson LA, Jin L, Wollan PC, Thompson GB, van Heerden J, Lloyd RV. Expression of p27kip1 and Ki-67 in benign and malignant thyroid tumors. Mod Pathol 11:169–174, 1998.PubMedGoogle Scholar
  77. 77.
    Tallini G, Garcia-Rostan G, Herrero A, Zelterman D, Viale G, Bosari S, Carcangiu ML. Downregulation of p27KIP1 and Ki67/Mib1 labeling index support the classification of thyroid carcinoma into prognostically relevant categories. Am J Surg Pathol 23:678–685, 1999.PubMedCrossRefGoogle Scholar
  78. 78.
    Ito Y, Kobayashi T, Takeda T Komoike Y, Wakasugi E, Tamaki Y, Tsujimoto M, Matsuura N, Monden M. Expression of p21 (WAF1/CIP1) protein in clinical thyroid tissues. Br J Cancer 74:1269–1274, 1996.PubMedGoogle Scholar
  79. 79.
    Zedenius J, Larsson C, Wallin G, Backdahl M, Aspenblad U, Hoog A, Borresen AL, Auer G. Alterations of p53 and expression of WAF1/p21 in human thyroid tumors. Thyroid 6:1–9, 1996.PubMedGoogle Scholar
  80. 80.
    Shi Y, Zou M, Farid NR, al-Sedairy ST. Evidence of gene deletion of p21 (WAF1/CIP1), a cyclin-dependent protein kinase inhibitor, in thyroid carcinomas. Br J Cancer 74:1336–1341, 1996.PubMedGoogle Scholar
  81. 81.
    Hirama T, Koeffler HP. Role of the cyclin-dependent kinase inhibitors in the development of cancer. Blood 86(3):841–854, 1995.PubMedGoogle Scholar
  82. 82.
    Elisei R, Shiohara M, Koeffler HP, Fagin JA. Genetic and epigenetic alterations of the cyclin-dependent kinase inhibitors p15INK4b and p16INK4a in human thyroid carcinoma cell lines and primary thyroid carcinomas. Cancer 83:2185–2193, 1998.PubMedCrossRefGoogle Scholar
  83. 83.
    Shirodkar S, Ewen M, De Caprio JA, Morgan J, Livingston DM, Chittenden T. The transcription factor E2F interacts with the retinoblastoma product and a p107-cyclin A complex in a cell cycle-regulated manner. Cell 68:157–166, 1992.PubMedCrossRefGoogle Scholar
  84. 84.
    Ledent C, Marcotte A, Dumont JE, Vassart G, Parmentier M. Differentiated carcinomas develop as a consequence of the thyroid specific expression of a thyroglobulin-human papillomavirus type 16 E7 transgene. Oncogene 10:1789–1797, 1995.PubMedGoogle Scholar
  85. 85.
    Holm R, Nesland JM. Retinoblastoma and p53 tumor suppressor gene protein expression in carcinomas of the thyroid. J Pathol 172: 267–272, 1994.PubMedCrossRefGoogle Scholar
  86. 86.
    Gottlieb TM, Oren M. p53 in growth control and neoplasia. Biochim Biophys Acta 1287:77–102, 1996.PubMedGoogle Scholar
  87. 87.
    Donghi R, Longoni A, Pilotti S, Michieli P, Della Porta G, Pierotti MA. Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J Clin Invest 91:1753–1760, 1993.PubMedCrossRefGoogle Scholar
  88. 88.
    Dobashi Y, Sugimura H, Sakamoto A, Mernyei M, Mori M, Oyama T, Machinami R. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn Mol Pathol 3:9–14, 1994.PubMedCrossRefGoogle Scholar
  89. 89.
    Fagin JA, Tang SH, Zeki K, Di Lauro R, Fusco A, Gonsky R. Re-expression of thyroid peroxidase in a derivative of an undifferentiated thyroid carcinoma cell line by introduction of wild-type p53. Cancer Res 56:765–771, 1996.PubMedGoogle Scholar
  90. 90.
    Moretti F, Farsetti A, Soddu S, Misiti S, Crescenzi M, Filetti S, Andreoli M, Sacchi A, Pontecorvi A. p53 re-expression inhibits proliferation and restores differentiation of human thyroid anaplastic carcinoma cells. Oncogene 14:729–737, 1997.PubMedCrossRefGoogle Scholar
  91. 91.
    Maehama T, Dixon JE. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol 9:125–128, 1999.PubMedCrossRefGoogle Scholar
  92. 92.
    Longy M, Lacombe D. Cowden disease: report of a family and review. Ann Genet 39(1):35–42, 1996.PubMedGoogle Scholar
  93. 93.
    Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP. Pten is essential for embryonic development and tumour suppression. Nat Genet 19:348–355, 1998.PubMedCrossRefGoogle Scholar
  94. 94.
    Halachmi N, Halachmi S, Evron E, Cairns P, Okami K, Saji M, Westra WH, Zeiger MA, Jen J, Sidransky D. Somatic mutations of the PTEN tumor suppressor gene in sporadic follicular thyroid tumors. Genes Chromosomes Cancer 23(3):239–243, 1998.PubMedCrossRefGoogle Scholar
  95. 95.
    Dahia PL, Marsh DJ, Zheng Z, Zedenius J, Komminoth P, Frisk T, Wallin G, Parsons R, Longy M, Larsson C, Eng C. Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res 57:4710–4713, 1997.PubMedGoogle Scholar
  96. 96.
    Bruni P, Boccia A, Baldassarre G, Trapasso F, Santoro M, Chiappetta G, Fusco A, Viglietto G. PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kip1. Oncogene 19(28):3146–3155, 2000.PubMedCrossRefGoogle Scholar
  97. 97.
    Gimm O, Perren A, Weng LP, Marsh DJ, Yeh JJ, Ziebold U, Gil E, Hinze R, Delbridge L, Lees JA, Mutter GL, Robinson BG, Komminoth P, Dralle H, Eng C. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. Am J Pathol 156(5):1693–700, 2000.PubMedGoogle Scholar
  98. 98.
    Giordano T, Thomas D, D Sanger, Lyziness M, Kuick R, Misek D, Hanash S. Comprehensive gene expression profiles of papillary thyroid carcinoma. Lab Invest 82:115A, 2002.Google Scholar
  99. 99.
    Canzian F, Amati P, Harach HR, Kraimps JL, Lesueur F, Barbier J, Levillain P, Romeo G, Bonneau D. A gene predisposing to familial thyroid tumors with cell oxyphilia maps to chromosome 19p13.2. Am J Hum Genet 63:1743–1748, 1998.PubMedCrossRefGoogle Scholar
  100. 100.
    McKay JD, Lesueur F, Jonard L, et al. Localization of a susceptibility gene for familial nonmedullary thyroid carcinoma to chromosome 2q21. Am J Hum Genet 69:440–6, 2001.PubMedCrossRefGoogle Scholar
  101. 101.
    Karp JE, Kaufmann SH, Adjei AA, Lancet JE, Wright JJ, End DW. Current status of clinical trials of farnesyltransferase inhibitors. Curr Opin Oncol 13(6):470–476, 2001.PubMedCrossRefGoogle Scholar
  102. 102.
    Carlomagno F, Vitagliano D, Guida T, Napolitano M, Vecchio G, Fusco A, Gazit A, Levitzki A, Santoro M. The kinase inhibitor PP1 blocks tumorigenesis induced by RET oncogene. Cancer Res 62(4):1077–1082, 2002.PubMedGoogle Scholar
  103. 103.
    Cheung CC, Ezzat S, Ramyar L, Freeman JL, Asa SL. Molecular basis off Hurthle cell papillary thyroid carcinoma. J Clin Endocrinol Metab 85:878–882, 2000.PubMedCrossRefGoogle Scholar
  104. 104.
    Chiappetta G, Toti P, Cetta F, Giuliano A, Pentimalli F, Amendola I, Lazzi S, Monaco M, Mazzuchelli L, Tosi P, Santoro M, Fusco A. The RET/PTC oncogene is frequently activated in oncocytic thyroid tumors (Hurthle cell adenomas and carcinomas), but not in oncocytic hyperplastic lesions. J Clin Endocrinol Metab 87:364–369, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  1. 1.Department of PathologyYale University School of Medicine, Room EP2-608, Yale New Haven HospitalNew Haven

Personalised recommendations